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Abstract. Internet of Things (IoT) has become widely adopted in many fields,
including industry, social networks, health care, and smart homes, connecting bil-
lions of IoT devices through the internet. Understanding and studying IoT mal-
ware through analysis using various approaches, such as Control Flow Graph
(CFG)-based features and then applying deep learning detection, are widely ex-
plored. In this study, we investigate the robustness of such models against adver-
sarial attacks. Our approach crafts the adversarial IoT software using the Sub-
graph Embedding and Augmentation (SGEA) method that reduces the embedded
size required to cause misclassification. Intensive experiments are conducted to
evaluate the performance of the proposed method. We observed that SGEA ap-
proach is able to misclassify all IoT malware samples as benign by embedding an
average size of 6.8 nodes. This highlights that the current detection systems are
prone to adversarial examples attacks; thus, there is a need to build more robust
systems to detect such manipulated features generated by adversarial examples.
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1 Introduction

Internet of Things (IoT) malware has emerged as one of the most challenging threats
on the Internet today [1], and is expected to grow for many years to come. To cope with
this threat, there has been a lot of works in the literature on the analysis, characterization
and detection of IoT malware [2], falling under both static and dynamic analysis-based
approaches [3]. One of the prominent static-based approaches to IoT analysis and de-
tection uses abstract graph structures, such as the control flow graph (CFG) [4–6]. In
using the CFGs for detecting IoT malware, defenders extract feature representations that
are capable of identifying those malware, including various graph properties, such as
the degree distribution, centrality measures, diameter, radius, etc. [4]. Those properties,
represented as a feature vector, are used in tandem with machine learning algorithms to
automate the labeling and detection of IoT malware samples.

As with other machine learning algorithms and applications, machine learning-
based IoT malware detection algorithms are prone to manipulation. The rise of adversar-
ial machine learning has highlight the fragile nature of those algorithms to perturbation
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attacks that would lead to misclassification: an adversary can introduce a small modi-
fication to the input sample space that would make the classifier to identify a piece of
malware as a benign sample (i.e., adversarial example; or AE). Indeed, there has been
a large body of work exploring the generation of AEs in general image-based classifi-
cation problems [7, 8] as well as in the context of malware classification [9–11].

In this work, we optimize the Graph Embedding and Augmentation (GEA), a recent
work on generating AEs in the context of CFG-based malware detection [11]. GEA
aims to inject a piece of code into a target sample to alter its graph representation and
the resulting feature used by the machine learning algorithm. In this work, we introduce
sub-GEA (SGEA), an AE generation algorithm that mines for discriminative patterns
(subgraphs) from a targeted class, and embeds such subgraphs in a sample towards gen-
erating the AE. SGEA does not only result in a high misclassification rate, but achieves
the essence of AE generation: a small perturbation (as measured by the perturbation
size) to the sample to result in the misclassification.
Contributions. Our contributions in this paper are as follows. First, we propose SGEA,
a graph embedding technique to generate AEs with reduced injection size. Second, we
show the favorable performance of SGEA by comparing it to GEA for both IoT malware
detection and classification. GEA and SGEA both generate adversarial IoT software
through embedding representative target sample to the original CFG representation of
the targeted sample, while maintaining its practicality and functionality. We evaluate
the performance of the methods via intensive experiments showing the effectiveness of
the approach in producing successful AEs.
Organization. In section 2, we discuss the related work. Then, the practical approach
for generating practical adversarial IoT software is described in section 3. The perfor-
mance of the proposed approach, evaluated through intensive experiments, are in sec-
tion 4. Finally, we conclude our work in section 5.

2 Related Work

Static analysis using various methods, including and CFGs, is well explored. Wuch-
ner et al. [12] proposed a graph-based classification system that uses features generated
from the quantitative data flow graphs of system calls. Moreover, Alasmary et al. [4]
analyzed Android and IoT malware based on CFG features and built a deep learning-
based detection system for IoT malware utilizing these features. Caselden et al. [13]
proposed an attack on the program binaries using static representations of hybrid infor-
mation and CFG. Alam et al. [14] proposed a malware detection system that matches
CFGs of small malware samples and addresses changes occurred in opcodes’ frequen-
cies using two methods. Bruschi et al. [15] proposed a CFG-based malware detection
system to compare extracted CFGs to known malware samples CFGs and then detect
the malware based on these graphs. Similarly, Yan et al. [16] classified malware samples
using CFG-based representation with deep convolutional neural networks. Machine and
deep learning algorithms are widely deployed in malware detection [3,4,17]. However,
deep learning-based models are vulnerable to adversarial attacks [9]. As a result, cur-
rent malware detection systems can be fooled to misclassify crafted malware samples
that are generated by applying small perturbation to the malware resulting in disastrous
consequences. For example, DeepFool attack was proposed by Moosavi et al. [8] that
uses iterative methods of L2 distance-based adversarial to generate AEs with minimal
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perturbation. Also, Goodfellow et al. [7] proposed fast method attacks, FGSM, to gen-
erate AEs that fools the model. Moreover, three adversarial attacks, called C&W, were
proposed by Carlini et al. [18] to explore the robustness of neural networks and existing
defense techniques. Although AE generation approaches are well explored in image-
based classifiers, limited research have been conducted on generating AE for malware
samples [10, 19], such as GEA [11]

3 Generating Adversarial Examples

Adversarial examples are generated by applying perturbation to the input feature space,
x′ = x + ε, where x is the input vector, and ε is the perturbation. The adversary aims
to misclassify the output of the targeted model, altering f(x) 6= f(x′), where f is
the model’s output. To reduce the detectability of the generated AEs, ε is minimized
while preserving the adversarial behavior, f(x) 6= f(x + δ), where δ = εmin. To
do so, multiple approaches have been proposed [8, 18]. In IoT malware, the process
aims to generate realistic AEs that preserve the functionality of the original samples,
although not maintained by the literature. Recently, Abusnaina et al. [11] proposed a
new approach to highlight these issues, called Graph Embedding and Augmentation
(GEA), in which the perturbation is applied at the code-level of the samples, ensuring
the practicality of the generated AE. In this study, SGEA is an enhanced approach to
generate AEs that reduces the perturbation overhead compared to GEA.

#include <stdio.h>
void main(){

int a = 0;
do{

a++;
}while(a < 10);

}

Listing 1.1: C script (original)

#include <stdio.h>
void main(){

int x = 0;
int s = 0;
if (x!=0){

s++;
}

}

Listing 1.2: C script (original)

3.1 Graph Embedding and Augmentation (GEA)

GEA [11] generates practical AEs that maintain the functionality of the original IoT
software while also achieving a high misclassification rate. This is done by combining
the CFG of the original sample with a selected CFG (graph merging). Practical Im-
plementation. GEA preserves the practicality of GEA by merging the original sample
xorg with a selected target sample xsel, which we highlight by an example. Listing 1.1
refers to the original sample script, while Listing 1.2 refers to the selected target sample
script. The goal is to combine the two scripts while insuring that xsel does not affect the
functionality of xorg. Listing 1.3 shows the script after the combination. Note that the
condition is set to execute only the functionality associated with xorg while preventing
xsel functionality from being executed. Figure 1a and Figure 1b show the corresponding
graphs for xorg and xsel, respectively. It can be seen that the combined graph in Figure 2
consists of the two aforementioned scripts sharing the same entry and exit nodes.
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;-- main:
/ (fcn) sym.main 24
| sym.main ();
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_4h], 0

| 0x004004e1 add dword [local_4h], 1
| 0x004004e5 cmp dword [local_4h], 9
| 0x004004e9 jle 0x4004e1

| 0x004004eb nop
| 0x004004ec pop rbp
\ 0x004004ed ret

(a) Generated CFG

;-- main:
/ (fcn) sym.main 35
| sym.main ();
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_8h], 0
| 0x004004e1 mov dword [local_4h], 0
| 0x004004e8 cmp dword [local_8h], 0
| 0x004004ec je 0x4004f6

| 0x004004f6 nop
| 0x004004f7 pop rbp
\ 0x004004f8 ret

| 0x004004ee mov dword [local_4h], 0xa
| 0x004004f5 nop

(b) Targeted CFG

Fig. 1: The generated CFG of the samples used for extracting graph-based features
(graph size, centralities, etc.) for graph classification and malware detection.

#include <stdio.h>
void main(){

/∗set a condition variable∗/
int cond=1;
if (cond==1){

/∗ script of original sample∗/
/∗ this section will be executed∗/
int a = 0;
do{

a++;
}while(a<10);

}
else{

/∗ script of target sample∗/
/∗ this section will not be executed∗/
int x = 0;
int s = 0;
if (x!=0){

s++;
}

}
}

Listing 1.3: C script of combining
original and selected samples

/ (fcn) main 66
| main ();
| ; var int local_10h @ rbp-0x10
| ; va0r int local_ch @ rbp-0xc
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_ch], 1
| 0x004004e1 cmp dword [local_ch], 1
| 0x004004e5 jne 0x4004fa

| 0x004004fa mov dword [local_8h], 0
| 0x00400501 mov dword [local_4h], 0
| 0x00400508 cmp dword [local_8h], 0
| 0x0040050c je 0x400515

| 0x004004e7 mov dword [local_10h], 0

| 0x00400515 nop
| 0x00400516 pop rbp
\ 0x00400517 ret

| 0x0040050e mov dword [local_4h], 0xa

| 0x004004ee add dword [local_10h], 1
| 0x004004f2 cmp dword [local_10h], 9
| 0x004004f6 jle 0x4004ee

| 0x004004f8 jmp 0x400515

Fig. 2: The generated adversarial graph us-
ing GEA approach. Note that this graph is
obtained logically by embedding the graph
in Fig. 1b into the graph in Fig. 1a, although
indirectly done by injecting the code list-
ings as highlighted in Listings 1, 2, and 3.

3.2 Sub-GEA (SGEA)

While GEA combines original and selected targeted graphs of the samples to cause
misclassification, this method reduces the injection size while preserving the same be-
havior, misclassification. To achieve that, we first convert the training samples of each
class to CFGs using Radare2 [20], then, we extract discriminative subgraph patterns of
each class using a correspondence-based quality criterion (CORK) [21]. This is done
by extracting subgraphs that appear frequently in one class and less frequently in the
other class. Let D denotes the CFGs of the training samples, D = {Gi}ni=1 and class
labels C = {ci}ni=1 where ci ∈ {+1,−1} is the class label of graph Gi; Also let D+

and D− denote the set of graphs in the corresponding classes.
Let DS = {Gi|S ⊆ Gi and Gi ∈ D} denote the supporting graphs of S. More-
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over, let D+
S and D−S , denote the supporting graphs of the subgraph in the positive

graphs and negative graphs, respectively. The CORK algorithm defines a submodu-
lar quality criterion, q, for a subgraph based on the set of supporting graphs (‘hits’)
and non-supporting graphs (‘misses’) in the two classes and is calculated as follows:
q(Gs) = −(|D+∼

S | ∗ |D
+∼
S | + |D

+
S | ∗ |D

−
S |). The best quality score is achieved when

a subgraph appears in all the graphs of one class and not once in the graphs of the
other class; the quality score is 0. Pruning strategies, proposed based on the quality cri-
terion in the CORK algorithm, are integrated in the gSpan algorithm to directly mine
discriminative subgraphs. Once the set of discriminative subgraphs are mined using the
CORK algorithm, we further employ the gSpan [22], a graph-based substructure pattern
mining, for mining frequent subgraphs of size five nodes or higher.
Constructing an AE Then, we combine the original sample with the smallest extracted
subgraph of the targeted class regarding nodes’ number. If the generated CFG failed
to be misclassified, another subgraph is selected in an ascending order with respect
to the number of nodes in the collection of subgraphs. When a subgraph successfully
achieves the misclassification, the operation ends. If no existing subgraph could cause
misclassification, the original sample is returned and the operation fails. Practical Im-
plementation. The process is done by combining the xorg with a selected discrimina-
tive subgraph xsel extracted from the targeted class. Figure 3 shows the discriminative
subgraph extracted from Gafgyt IoT malicious family. Listing 1.4 is an equivalent sam-
ple of C script to generate such subgraph, which can be combined with the original
sample to generate the practical AE.

#include<stdio.h>
void main(){

int GEAVar1 = 0; // block 0
if (GEAVar1 == 1){ // block 1

GEAVar1 += 1;
}
else if (GEAVar1 == 2){ // block 2

GEAVar1 += 2;
}
int GEAVar2 = 0; // block 3
if (GEAVar2 == 0){ // block 4

GEAVar2 += 1;
}
else{ // block 5

GEAVar2 += 2;
}
int GEAVar3 = 0; // block 6

}

Listing 1.4: C script of an example Gafgyt
extracted subgraph

1 2

3

54

6

0

Fig. 3: Sample of extracted dis-
criminative subgraph from Gafgyt
malicious family.

4 Evaluation and Discussion
In this section, we evaluate the performance of the approaches over deep learning-based
malware detection and classification systems trained over CFG-based features.

4.1 Dataset

To assess our proposed approaches, we started by gathering the dataset. To facilitate
the evaluation, we gathered a dataset of binaries of two categories, IoT malicious and
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Table 1: Distribution of IoT samples
across the classes.

Class # of Samples % of Samples# Train # Test # Total
Benign 2,400 600 3,000 34.60%
Gafgyt 2,400 600 3,000 34.60%
Mirai 1,927 481 2,408 27.68%
Tsunami 210 52 262 3.02%
Overall 6,937 1,733 8,670 100%

Table 2: Distribution of extracted features.
Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
# of Edges 1
# of Nodes 1
Total 23

benign samples. Malicious samples are recent, in particular they were collected from
the period of January 2018 to late February of 2019 from CyberIOCs [23]. Moreover,
we assembled a dataset of benign samples from source files on GitHub [24].
Dataset Creation. Our dataset consists of 3,000 IoT benign samples and 5,670 IoT
malware samples gathered from CyberIOCs [23]. We reverse-engineered the datasets
using Radare2 [20], a reverse engineering framework that provides various analysis and
automation capabilities, including disassembly. Upon disassembling the binary of each
sample, benign or malicious, we extracted the corresponding CFG of each sample.
Ground Truth Class. To validate our benign and malicious samples, we uploaded them
on VirusTotal [25] and gathered the scan results corresponding to each sample. Then,
we used AVClass [26] to classify malicious samples to their corresponding families. We
summarized our dataset in Table 1.

Moving forward, we find different algorithmic features of the CFGs corresponding
to individual binaries. In particular, for each sample, we extract 23 various algorithmic
features categorized into seven groups, as in [4]. Table 2 represents the feature category
and the number of features in each category. The five features extracted from each of
the four feature categories represent minimum, maximum, median, mean, and standard
deviation values for the observed parameters.

4.2 Experimental Setup

IoT Malware Detection System The goal of our detection system is to recognize IoT
malicious applications from benign. Therefore, we trained two deep learning models,
Convolutional Neural Network (CNN)-based and Deep Neural Network (DNN)-based
models, over the extracted CFG-based features. In this study, the input (X) of the model
is a one dimensional (1D) vector of size 1× 23 representing the extracted features.
CNN-based Design. We implemented the CNN architecture utilized in Abusnaina et
al. [11]. Figure 4 shows the internal design of the CNN architecture and, although a
standard design, more details can be found in the original paper [11].
DNN-based Design. The DNN-based model architecture consists of two consecutive
fully connected dense layers of size 1 × 100 connected to the input vector, followed
by a dropout with a probability of 0.25. Similarly, the output of the dropout function is
fully connected with another two fully connected dense layers of size 1×100, followed
by a dropout with a probability of 0.5. The output is then fed to the softmax layer to be
evaluated based on the AR, FNR, FPR, to measure the performance of the model.
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Fig. 5: The design of our DNN architecture.

We trained both models using 100 epochs with a batch size of 32. The architecture
of the CNN and DNN designs are shown in Figure 4 and Figure 5, respectively.
IoT Malware Classification System. In addition to recognizing IoT malicious appli-
cations, the malware classification system distinguishes and classifies the malicious
samples to their corresponding families. Similar to the detection system, we utilized
the aforementioned CNN- and DNN-based architectures and trained two deep learning
models to classify the samples.
GEA. Due to the nature of the extracted features, the applied changes on the CFG will
be reflected in the features, regardless of the effects on the functionality and practicality
of the original sample. Similar to [11], we selected six different sized graphs (minimum,
median and maximum) from the benign and malware samples as xsel, where the size is
referred to as the number of nodes in the graph.
SGEA. While GEA modifies the CFG of the sample by simply connecting the selected
graph with the original sample. SGEA connects a carefully generated subgraph with
the original sample to cause misclassification, reducing the injected graph size. To gen-
erate the subgraph, we extracted the discriminative subgraph patterns from each class
and their subgraphs of size five nodes or higher. Then, in order to reduce the injected
graph size, we connected the original sample with the subgraph of the minimum size. If
the generated AE misclassifies the classifier, the process succeeds, and the AE will be
returned, if not, the next subgraph is selected, in ascending order regarding the number
of nodes in the subgraph. In case none of the subgraphs cause misclassification, the
original sample will be returned as the process failed.
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Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0.985 0 0.006 0.041

0.005 0.995 0.022 0

0.01 0.005 0.961 0

0 0 0.01 0.959

(a) CNN-based

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0.982 0.002 0.014 0

0.005 0.987 0.022 0

0.013 0.012 0.953 0

0 0 0.01 1

(b) DNN-based

Fig. 6: Confusion matrices of IoT malware classification systems.

4.3 Results and Discussion

Deep Learning-based IoT Malware Detection Systems. We designed two-class clas-
sifications, CNN- and DNN-based models, that distinguish IoT malware from IoT be-
nign applications. The model is trained over 23 CFG-based features categorized into
seven groups. More detailed information regarding the dataset is provided in subsec-
tion 4.1. We achieved a CNN- and DNN-based model accuracy rate of 98.96% and
98.67% with a False Negative Rate (FNR) of 0.88% and 1.41% and a False Positive
Rate (FPR) of 1.33% and 1.16%, respectively.
Deep Learning-based IoT Malware Classification Systems. We designed four-class
classifications, CNN- and DNN-based models, that are capable of classifying the mali-
cious samples into their corresponding families. We achieved a CNN- and DNN-based
model accuracy rate of 98.09% and 97.57%, respectively. Figure 6a and Figure 6b are
the confusion matrices of the trained models.
GEA. We investigated the impact of the size of the graph on the misclassification rate.
We selected three graphs, as targets, from each of the benign and malicious IoT soft-
ware, and connected each of these target graphs with a graph of the other class to under-
stand the impact of size on misclassification with GEA. The results for the IoT detection
system are shown in Table 3. It can be observed that the misclassification rate increases
when the number of nodes increases. In addition, the time needed to craft the AE is pro-
portional to the size of the selected sample. In the IoT malware detection systems, we
achieved a malware to benign misclassification rate of as high as 100% on both CNN-
and DNN-based models, and a benign to malware misclassification rate of 60.22% and
60.89% on CNN- and DNN-based models, respectively. Table 4 shows the targeted
and non-targeted misclassification rates over the IoT malware classification systems.
Non-targeted misclassification indicates that after combining the original and selected
samples, the original sample class changes. Moreover, if the new assigned label is the
selected sample class, it is considered as targeted misclassification. Here, we achieved a
targeted misclassification rate of 100% from all malicious families into benign on both
CNN- and DNN-based models, highlighting the security issue in such systems.
SGEA. Similar to GEA, SGEA focuses on generating the adversarial desired output.
In addition, SGEA reduces the size of injection by combining the original sample with
a carefully selected subgraph. Table 5 shows the evaluation of SGEA against CNN-
and DNN-based IoT malware detection systems. Notice that GEA outperforms SGEA
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Table 3: GEA: Misclassification rate over IoT detection systems. MR refers to misclas-
sification rate, whereas, CT refers to the crafting time in millisecond per sample.

Malware to benign MR.

Size # Nodes MR (%) CT (ms)CNN DNN
Minimum 10 50.57 61.03 37.39
Median 23 99.64 98.76 40.46

Maximum 1075 100 100 6,430.66

Benign to malware MR.

Size # Nodes MR (%) CT (ms)CNN DNN
Minimum 11 45.92 19.33 34.10
Median 43 60.22 59.90 56.83

Maximum 274 47.36 60.89 763.63

Table 4: GEA: Misclassification rate over IoT classification systems.

Class # Nodes
Misclassification Rate

Crafting Time (ms)Non-targeted Targeted
CNN DNN CNN DNN

Benign
10 48.72% 58.87% 45.89% 48.54% 37.39
23 99.64% 99.55% 99.64% 99.38% 40.46

1075 100% 100% 100% 100% 6,430.66

Gafgyt
13 24.62% 41.74% 0.17% 0.35% 32.36
64 66.81% 77.40% 15.97% 16.06% 68.77

155 54.63% 47.13% 8.03% 0.00% 125.15

Mirai
11 41.37% 37.22% 0.32% 0.80% 34.10
48 62.30% 52.15% 12.46% 0.96% 56.84

274 95.60% 91.05% 93.45% 53.67% 763.63

Tsunami
15 59.54% 60.73% 0.12% 0.12% 35.25
59 63.95% 64.06% 0.00% 0.00% 59.93

138 66.74% 64.36% 0.00% 0.00% 201.82

in benign to malware misclassification. However, SGEA achieves 100% malware to
benign misclassification rate against CNN- and DNN-based models, with an average
subgraph size of 6.8 nodes, outperforming the GEA approach.

Figure 7 and Figure 8 show the evaluation of CNN- and DNN-based IoT malware
classification systems against SGEA approach. Here, Figure 7a and Figure 7c repre-
sent the non-targeted and targeted misclassification rate over CNN-based model, re-
spectively. Similarly, Figure 8a, and Figure 8c show the non-targeted and targeted mis-
classification rate over DNN-based model. Figure 7b, Figure 7d, Figure 8b and Fig-
ure 8d represent the average size of the connected subgraphs to generate the AEs over
the CNN- and DNN-based models. For instance, SGEA approach successfully targeted
misclassifies all Gafgyt test samples into benign over CNN-based classification model
with an average subgraph size of 20.23 nodes, which is significantly better than GEA.
Moreover, it misclassifies all Gafgyt test samples into other classes using discriminative
subgraphs extracted from benign samples with an average size of 6.77 nodes. Notice
that all classes have a high targeted misclassification rate towards the benign class and a
low targeted misclassification rate from benign to malicious families and among mali-
cious families. This behavior is caused by the nature of the benign samples, as they are
diverse in characteristics and functionalities. However, malicious samples within the
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Table 5: SGEA: IoT malware detection system evaluation. Here, MR refers to misclas-
sification rate, AVG. Size refers to the overall average subgraph size used to achieve
misclassification, and CT is the AEs crafting time per sample in seconds.

Benign to malware misclassification.
Architecture MR(%) AVG. Size CT (s)

CNN 22.22 10.15 2.57
DNN 33.88 11.09 2.23

Malware to benign misclassification.
Architecture MR(%) AVG. Size CT (s)

CNN 100 6.80 0.23
DNN 100 6.86 0.21

same family tend to have the same functionalities, resulting in high level of similarity
in the extracted CFGs and their corresponding features.

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 1 0.98 1

0.033 0 1 1

0.036 1 0 1

0.183 1 1 0

(a) Non-targeted misclassfication rate

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 6.77 6.71 6.72

5.42 0 22.08 21

6.25 10.08 0 20

21.38 23.1 23.94 0

(b) Non-targeted MR subgraph size

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 1 0.98 1

0.03 0 0.166 0.108

0.016 0.33 0 0.243

0 0.069 0.053 0

(c) Targeted misclassfication rate

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 20.23 20.4 20

6.55 0 7.6 7.25

12.2 8.04 0 26

0 5.18 7.87 0

(d) Targeted MR subgraph size

Fig. 7: SGEA: CNN-based IoT malware classification system evaluation. Here, MR
refers to misclassification rate, columns represent the sample original class, whereas,
rows represent the connected subgraph pattern class.
Summary. The goal of this study is to investigate the robustness of CFG-based IoT
malware detection systems against targeted and non-targeted adversarial examples. The
main focus of the evaluation is to misclassify the malicious samples into benign. GEA
and SGEA have been evaluated over CNN- and DNN-based IoT malware detection sys-
tems. In addition, our proposed approach, SGEA, significantly reduces the perturbation
overhead of the generated samples, increasing its immunity against detection.

5 Conclusion

In this work, we study the robustness of graph-based deep learning models against ad-
versarial machine learning attacks. To do so, we design SGEA, an approach to generate
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Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 1 1 1

0.463 0 1 1

0.18 1 0 1

0.366 1 1 0

(a) Non-targeted misclassfication rate

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 6.69 6.83 7.05

11.27 0 21.42 5.25

16.96 31.87 0 10

21.68 12.9 7.82 0

(b) Non-targeted MR subgraph size

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 1 1 1

0.463 0 0.193 0.405

0 0.574 0 0.594

0 0.356 0.126 0

(c) Targeted misclassfication rate

Benign Gafgyt Mirai Tsunami

Benign

Gafgyt

Mirai

Tsunami

0 19.71 20.73 19.86

24.58 0 8.38 8.53

0 11.86 0 9.18

0 10.74 8.52 0

(d) Targeted MR subgraph size

Fig. 8: SGEA: DNN-based IoT malware classification system evaluation. Here, MR
refers to misclassification rate, columns represent the sample original class, whereas,
rows represent the connected subgraph pattern class.

AEs corresponding to IoT software by reducing the embedded size to result in model
misclassification. The performance of the method is validated through various experi-
ments. We observed that SGEA misclassifies all malware samples as benign while only
embedding a subgraph of an average size of 6.8 nodes. This highlights the need for
more robust IoT malware detection and classification tools against adversarial learning,
particularly those optimized to operate with a small graph perturbation. Acknowledge-
ment. This work is supported by NRF grant 2016K1A1A2912757, NVIDIA GPU Grant
(2018 and 2019), and a Cyber Florida Seed Grant.
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