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ABSTRACT

Eicient extraction of code authorship attributes is key for suc-
cessful identiication. However, the extraction of such attributes is
very challenging, due to various programming language speciics,
the limited number of available code samples per author, and the
average code lines per ile, among others. To this end, this work
proposes a Deep Learning-based Code Authorship Identiication
System (DL-CAIS) for code authorship attribution that facilitates
large-scale, language-oblivious, and obfuscation-resilient code au-
thorship identiication. The deep learning architecture adopted in
this work includes TF-IDF-based deep representation using multi-
ple Recurrent Neural Network (RNN) layers and fully-connected
layers dedicated to authorship attribution learning. The deep repre-
sentation then feeds into a random forest classiier for scalability
to de-anonymize the author. Comprehensive experiments are con-
ducted to evaluate DL-CAIS over the entire Google Code Jam (GCJ)
dataset across all years (from 2008 to 2016) and over real-world
code samples from 1987 public repositories on GitHub. The results
of our work show the high accuracy despite requiring a smaller
number of iles per author. Namely, we achieve an accuracy of 96%
when experimenting with 1,600 authors for GCJ, and 94.38% for
the real-world dataset for 745 C programmers. Our system also
allows us to identify 8,903 authors, the largest-scale dataset used by
far, with an accuracy of 92.3%. Moreover, our technique is resilient
to language-speciics, and thus it can identify authors of four pro-
gramming languages (e.g., C, C++, Java, and Python), and authors
writing in mixed languages (e.g., Java/C++, Python/C++). Finally,
our system is resistant to sophisticated obfuscation (e.g., using C
Tigress) with an accuracy of 93.42% for a set of 120 authors.
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1 INTRODUCTION

Authorship identiication of natural language text is a well-known
problem that has been studied extensively in the literature [30,
31, 34, 45]. However, far fewer works are dedicated to authorship
identiication in structured code, such as the source code of com-
puter programs [18]. Source code authorship identiication is the
process of code writer identiication by associating a programmer
to a given code based on the programmer’s distinctive stylometric
features. The problem is, however, diicult and diferent from au-
thorship identiication of natural language text. This fundamental
diiculty is chiely due to the inherent inlexibility of the written
code expressions established by the syntax rules of compilers.

Code authorship identiication relies on extracting features from
source code that a programmer produces based on the program-
mer’s preferences in structuring codes and naming variables.Given
these features, the main objective of code authorship identiica-
tion is to correctly assign programmers to source codes based on
the extracted features. Being able to identify code authors is both
a risk and a desirable feature. On the one hand, code authorship
identiication poses a privacy risk for programmers who wish to
remain anonymous, including contributors to open-source projects,
activists, and programmers who conduct programming activities
on the side. Thus, in turn, this makes code authors identiication
a de-anonymization problem. On the other hand, code authorship
identiication is useful for software forensics and security analysts,
especially for identifying malicious code (such as malware) pro-
grammers; e.g., where such programmers could leave source code
in a compromised system for compilation, or where features of
programmers could be extracted from decompiled binaries. More-
over, authorship identiication of source code is helpful with plagia-
rism detection [15], authorship disputes [49], copyright infringe-
ment [26], and code integrity investigations [38].

The problem of code author identiication is challenging, and
faces several obstacles that prevent the development of practical
identiication mechanisms. First, programming łstylež of program-
mers continuously evolves as a result of their education, their ex-
perience, their use of certain software engineering paradigms, and
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their work environment [17]. Second, the programming style of
programmers varies from language to another due to external con-
straints placed by managers, tools, or even languages. Third, while
it is sometimes possible to obtain the source code of programs,
sometimes it is not, and the source code is occasionally obfuscated
by automatic tools, preventing their recognition.

To address those challenges, a recent attention to source code
authorship identiication has revived more than two-decade old
work [35, 43] by proposing several techniques [18, 19]. However,
there are several limitations with the prior work. Namely, (i) most
software features used in the literature for author identiication
are not directly applicable to another language; features extracted
in Java cannot be directly used as features in C or in Python for
identifying the same author, (ii) techniques used for extracting code
authorship features do not scale well for a large set of authors (see
section 2), and (iii) the extracted features are usually large and not
all of them are relevant to the identiication task, necessitating an
additional procedure for feature evaluation and selection [22].

To address the aforementioned issues, this work presents a tech-
nique that uses deep learning as a method for learning data repre-
sentation. Our work attempts to answer the following questions. (i)
How can deep learning techniques contribute to the identiication
of code authors? (ii) To what extent does an authorship identiica-
tion approach based on deep learning scale in terms of the number
of authors given a limited number of code samples per author?
(iii) Can deep learning help identify authorship attributes that go
beyond language speciics in an eicient way and without requir-
ing a prior knowledge of the language? (iv) Will deep authorship
representation still be robust when the source code is obfuscated?
Summary of Contributions.We summarize the main contribu-
tions of this work in multiple directions as follows: First, we design
a feature learning and extraction method using a deep learning
architecture with a recurrent neural network (RNN). The extraction
process is fed by a complete or an incomplete source code to gener-
ate high quality and distinctive code authorship attributes. The prior
work considers preprocessing data transformations which resulted
in high quality features for efective code authorship identiication.
However, this feature engineering process is usually dependent on
human prior knowledge of the programming language addressed in
a given task. Our approach utilizes a learning process of large-scale
code authorship attribution based on a deep learning architecture to
eiciently generate high quality features. Also, as input to the deep
learning network, we use the TF-IDF (Term Frequency-Inverse Doc-
ument Frequency) that is already a well-known tool for textual data
analysis [14, 27, 31]. Thus, our approach does not require a prior
knowledge of any speciic programming language, thus it is more
resilient to language speciics. In the large-scale dataset experiment,
we found that top features are mostly for keywords of the used pro-
gramming language, which implies that a programmer cannot easily
avoid being identiied by simply changing the variable names but
by dramatically changing his programming style. With this feature
learning and extraction method, we were able to achieve compa-
rable accuracy to (and sometimes better than) the state-of-the-art.
For example, compared to 100% accuracy in detecting authorship
over a small sample (35 C++ programmers) using features extracted
from the abstract syntax tree of the source code [19], we provide
a similar accuracy over a larger dataset (150 C++ programmers)

and close to that accuracy (99%) for other programming languages
using our scalable deep learning-based approach (a comparison is
in Table 1).

Second, we experimentally conduct a large scale code authorship
identiication and demonstrate that our technique can handle a large
number of programmers (8,903 programmers) while maintaining
a high accuracy (92.3%). To make our authorship identiier work
at a large scale, Random Forest Classiier (RFC) is utilized as a
classiier of a TF-IDF-based deep representation extracted by RNN.
This approach allows us to utilize both deep learning’s good feature
extraction capability and RFC’s large scale classiication capability.
Compared to our work, the largest scale experiment in the literature
used 1,600 programmers and achieved a comparable accuracy of
92.83% using nine iles per author as shown in Table 9 of [19].
While our dataset includes more than 5.5 times the number of the
programmers in the prior work, our technique required less data
per author (only seven iles) for the same level of accuracy at a lower
computational overhead. Our experiments are complemented with
various analyses. We explore the efect of limited code samples
per author and conduct experiments with nine, seven, and ive
code samples per author. We investigate the temporal efect of
programming style on our approach to show its robustness.

Third, we show that our approach is oblivious to language speciics.
Applied to a dataset of authors writing in multiple languages, our
deep learning architecture is able to extract high quality and dis-
tinctive features that enable code authorship identiication even
when the model is trained by mixed languages. We based our assess-
ment on an analysis over four individual programming languages
(namely, C++, C, Java, and Python) and three combinations of two
languages (namely, C++/C, C++/Java, and C++/Python).

Fourth, we investigate the efect of obfuscation methods on the
authorship identiication and show that our approach is resilient to
both simple of-the-shelf obfuscators, such as Stunnix [2], and more
sophisticated obfuscators, such as Tigress [3] under the assumption
that the obfuscators are available to the analyzer. We achieve an
accuracy of 99% for 120 authors with nine obfuscated iles, which
is better than the previously achieved accuracy in [19].

Finally, we examine our approach on real-world datasets and
achieve 95.21% and 94.38% of accuracy for datasets of 142 C++
programmers and 745 C programmers, respectively.
Organization. The remainder of the paper is structured as follows.
We review the related work in section 2. We introduce the theoreti-
cal background required for understanding our work in section 3.
In section 4 we present our deep learning based approach for source
code authorship identiication.We proceed with a detailed overview
of the experimental results of our approach in section 5. Finally,
the limitations of this work are outlined in section 6, followed by
concluding remarks in section 7.

2 RELATEDWORK

Broadly related to our work is the attribution of unstructured text.
Authorship attribution for unstructured textual documents is a well-
explored area, where earlier attempts to match anonymous written
documents with their authors were motivated by the interest of
settling the authorship of disputed works, such as The Federalist
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Table 1: Comparison between our work using deep learning for authorship identiication and various previous works in the

literature, over the used classiication techniques, languages, and approach.MDA=MultipleDiscriminantAnalysis, FFNN=Feed

Forward Neural Network, RNN=Recurrent Neural Network, KNN=K-Nearest Neighbor. Results are excerpted from references.

Reference # Authors Languages Accuracy (%) Classiication Technique

Pellin [40] 2 Java 88.47% Machine learning (SVM with tree kernel)

MacDonell et al. [37] 7 C++ 81.10% Machine learning (FFNN). Statistical analysis (MDA)

MacDonell et al. [37] 7 C++ 88.00% Machine learning (case-based reasoning).

Frantzeskou et al. [27] 8 C++ 100.00% Rank similarity measurements (KNN)

Burrows et al. [16] 10 C 76.78% Information retrieval using mean reciprocal ranking

Elenbogen & Seliya [24] 12 C++ 74.70% Statistical analysis (decision tree model)

Lange & Mancoridis [36] 20 Java 55.00% Rank similarity measurements (nearest neighbor)

Krsul & Spaford [35] 29 C 73.00% Statistical analysis (discriminant analysis)

Frantzeskou et al. [27] 30 C++ 96.90% Rank similarity measurements (KNN)

Ding & Samadzadeh [22] 46 Java 62.70% Statistical analysis (canonical discriminant analysis)

Burrows et al. [18] 100 C, C++ 79.90% Machine learning (neural network classiier)

Burrows et al. [18] 100 C, C++ 80.37% Machine learning (support vector machines)

Caliskan-Islam et al. [19] 229 Python 53.91% Machine learning (random forest)

Caliskan-Islam et al. [19] 1,600 C++ 92.83% Machine learning (random forest)

This work 566 C 94.80% Machine learning (RNN with random forest)

This work 1,952 Java 97.24% Machine learning (RNN with random forest)

This work 3,458 Python 96.20% Machine learning (RNN with random forest)

This work 8,903 C++ 92.30% Machine learning (RNN with random forest)

Papers. Through the last two decades, studies of authorship attribu-
tion have focused on determining indicative features of authorship
using the linguistic information (e.g., length and frequency of words
or pairs of words, vocabulary usage, sentence structure, etc.). Re-
cent works have shown high accuracy in identifying authors of
various datasets such as chat messages, e-mails, blogs and micro-
blogs entries. Abbasi and Chen [5] proposedwriteprints, a technique
that demonstrated a remarkable result in capturing authorship sty-
lometry in diverse corpora including eBay comments and chat as
well as e-mail messages of up to a hundred unique authors. Uzuner
and Katz [48] provided a comparative study of diferent stylometry
methods used for authorship attribution and identiication. Afroz et
al. [6] investigated the possibility of identifying cybercriminals by
analyzing their textual entries in underground forums, even when
they use multiple identities. Stolerman et al. [46] considered using
classiiers’ conidence to address the open-world authorship identi-
ication problem. Another body of work has investigated authorship
attribution under adversarial settings either for the purpose of hid-
ing the identity or impersonating (i.e., mimicking) other identity.
Brennan et al. [13] studied three adversarial settings to circumvent
authorship identiication: obfuscation, imitation and translation.

Addressing authorship attribution for structured data, such as
source code, presents a challenge and another interesting body of
work in the ield of authorship attribution. A summary of the related
work is in Table 1, with a comparison across four variables: the
number of authors, the programming language, the accuracy, and
the used technique. The method commonly followed in the litera-
ture for code authorship identiication research has two main steps:
feature extraction and classiication. In the irst step, software met-
rics or features representing an author’s distinctive attributions are
processed and extracted. In the second step, those features are fed
into an algorithm to build models that are capable of discriminating
among several authors. While the second step is a straightforward

data-driven method, the irst step leads to major challenges and has
become the focus of several researches for more than two decades.
Designing authorship attributions that relect programmers’ stylis-
tic characteristics has been investigated by multiple works, since
the early work of Krsul et al. [35]. Existing code authorship attri-
bution methods include extracting features from diferent levels
of programs, depending on the targeted code for analysis. These
features can be as simple as byte-level or term-level features [27],
or as complex as control and data low graphs [7, 39, 41] or even
abstract syntax tree features [19, 40]. The quality of extracted au-
thorship attributes signiicantly afects the identiication accuracy
and the extent to which the proposed method can scale in terms
of the number of authors. Krsul and Spaford [35] were the irst to
introduce 60 authorship stylistic characteristics categorized into
three classes: programming layout characteristics (e.g., the use
of white spaces and brackets), programming style characteristics
(e.g., average variable length and variable names), and program-
ming structure characteristics (e.g., the use of data structures and
number of code lines per function). MacDonell et al. [37] adopted
only 26 authorship stylistic characteristics extracted using custom-
built software IDENTIFIED. Some of these characteristics were
extracted by calculating the occurrence of features per line of code.
Frantzeskou et al. [27] introduced Source Code Author Proiles us-
ing byte-level n-grams features for authorship attribution. Their
work was inspired by the success of using n-gram in text authorship
identiication. Moreover, using n-gram have made the approach
language-independent, an issue that limited precedingworks. Lange
and Mancoridis [36] were the irst to consider a combination of
text-based features and software-based features for code authorship
identiication. Their work used feature histogram distributions for
inding the best combination of features that achieve the best identi-
ication accuracy. Elenbogen and Seliya [24] considered six features
to establish programmers’ proiles based on personal experience
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and heuristic knowledge: the number of comments, lines of code,
variables’ count and name length, the use of for-loop, and program
compression size. Burrows et al. [16] used a combination of n-gram
and stylistic characteristics of programmers for authorship identi-
ication. Most recently, Caliskan-Islam et al. [19] showed the best
results over a large scale dataset (1,600 programmers) by far, taking
advantage of abstract syntax tree node bigrams. Their approach
included an extensive feature extraction process for programmer
code stylometry involving code parsing and abstract syntax tree
extraction, resulting in large and sparse feature representations,
and dictating a further feature evaluation and selection process.
After authorship attributions have been introduced, most of the
previous works on code authorship identiication have adopted
either a statistical analysis approach, a machine learning-based
classiication, or a ranking approach that is based on similarity
measurements in order to classify code samples [18]: Statistical
analysis methods are considered for limiting the feature space to
discover highly-indicative features of authorship. Krsul and Spaf-
ford [35], MacDonell et al. [37], and Ding and Samadzadeh [22]
used discriminant analysis for identifying authors. As for machine
learning, various approaches are used for source code authorship
identiication : case-based reasoning [37], neural networks [18, 37],
decision trees [24], support vector machine [18, 40], and random
forest [19]. As a general approach of similarity measurement, rank-
ing based on similarity measurements can be used to compute the
distance between a test instance and candidate instances in the
feature space. Using k-nearest neighbor is one method to assign
instances to authors with similar instances. Lange and Mancoridis
[36], Frantzeskou et al. [27], and Burrows et al. [16] implemented
diferent ranking methods based on similarity measurements.

Code authorship identiication could also be done on binaries,
which is addressed in the literature. Binary-level techniques [7,
20, 39, 41] are advocated as a viable tool for malware, proprietary
software, and legacy software attribution [39]. While very useful,
binary-level techniques work under the assumption that a toolchain
provenance is used to generate the binary code, including the op-
erating system, compiler family, version, optimization level and
source language are known to the analyzer. Source-level techniques,
on the other hand, are more lexible and equally useful, especially in
addressing incomplete pieces of code (which cannot be compiled).
Even when operating on binaries, code-like artifacts are what is
being actually analyzed. For example, Caliskan-Islam et al. [20]
showed that a simple reverse engineering process of binary iles
can generate a pseudo-code that can be treated as a source code for
code authorship identiication.

3 BACKGROUND AND MOTIVATION

TF-IDF is a well-known tool for text data mining. The basic idea
of TF-IDF is to evaluate the importance of terms in a document in
a corpus, where the importance of a term is proportional to the
frequency of the term in a document. However, it is highly likely
to be emphasized by documents which have a very common term
over a corpus. Therefore, how speciic a given term is over a corpus
should be considered. It can be quantiied as an inverse function
of the number of documents in which it appears. In building the
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Figure 1: TheTF-IDF values of top-30 terms for ive program-

mers. The value of a term is diferent among authors who use the
same term. The terms are: (‘ans’, ‘begin’, ‘begin end’, ‘bool’, ‘break’,
‘char’, ‘cin’, ‘cin int’, ‘cmath’, ‘cmath include’, ‘const’, ‘const int’, ‘con-
tinue’, ‘cout’, ‘cout case’, ‘cstdlib’, ‘cstdlib include’, ‘cstring’, ‘cstring
include’, ‘deine’, ‘deine pb’, ‘double’, ‘end’, ‘endl’, ‘false’, ‘freopen’,
‘include cmath’, ‘include cstdlib’, ‘include cstring’, ‘include map’).

data preprocessing component of our technique, a term t in a doc-
ument d of a corpus D is assigned a weight using the formula
TF-IDF(t ,d,D) = TF(t ,d) × IDF(t ,D), where TF(t ,d) is the term
frequency (TF) of t in d and IDF(t ,D) = log(|D|/DF(t ,D)) + 1,
where |D| is the number of documents in D and DF(t ,D) is the
number of documents containing the term t .

3.1 Term Frequency-Inverse Document
Frequency (TF-IDF)

Using TF-IDF as initial representation for code iles is motivated by
its wide-range applications on processing textual data. Terms and
n-grams features (frequency) are commonly used in information
retrieval and have been adopted for code authorship identiica-
tion [14, 27, 31]. TF-IDF features describe an author’s preferences
on using certain terms, or his/her preference for speciic commands,
data types, and libraries. Figure 1 illustrates the mean TF-IDF values
of the top-30 terms used by ive programmers in nine C++ iles
of code. Even with slight diference for some terms, the TF-IDF
value difers from one programmer to another presenting its valid-
ity to be used as initial representation of code iles. If the values are
composed into one vector for each programmer, then we can distin-
guish more distinctively each author by observing the distribution
of the values. Another observation is that the top features are for
keywords of the used programming language. Such observation
suggests that a programmer cannot easily avoid being identiied
by simply changing the variable names but rather by dramatically
changing the programming style itself. For example, it seems that
‘cout’ should not have such a high TF-IDF score because it is a
common command for printing out a message, but it has. This is be-
cause ‘cout’ has been used by only a small number of programmers
solving problems in Google Code Jam, which in turn makes the
keyword distinctive. Thus, frequent use of ‘cout’ can be regarded
as some programmer’s programming style.
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3.2 Deep Representation of TF-IDF Features

Code authorship identiication can be formulated as a classiication
problem, where authors are classiied based on their distinctive au-
thorship attributes. The performance of machine learning methods
relies on the quality of data representation (features or attributes),
which requires an expensive feature engineering process. This pro-
cess is sometimes labor-intensive and heavily dependent on human
prior-knowledge in the classiication application ield [10]. Identii-
cation of a large number of authors using TF-IDF directly cannot
be easily achieved as can be seen in Figure 2(a). Recently, repre-
sentation learning has gained increasing attention in the machine
learning community and has become a ield in and of itself dedi-
cated to enabling easier and more distinctive feature extraction pro-
cesses [11]. Among several representation learning methods, deep
learning has achieved a remarkable success in capturingmore useful
representations through multiple non-linear data transformations.
Deep learning representations have enabled several advancements
in many machine learning applications such as speech recognition
and signal processing [30ś32], object recognition [33ś35], natural
language processing [36, 37], and multi-task and transfer learning
[34,38]. Since the breakthrough work of Hinton et al. [29], multi-
ple representation techniques using deep learning were presented
in the literature. Those techniques have been employed in many
ields, with various applications, as reported in [9, 10]. One poten-
tial application that was not previously explored in the literature is
code authorship identiication, which we explore in this work. The
techniques used in this paper are LSTM (Long Short-Term Memory)
and Gated Recurrent Units (GRU) that are sorts of Recurrent Neural
Network (RNN) among various Deep Neural Networks (DNN).
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Figure 2: The PCA visualization of TF-IDF and deep repre-

sentation of code attributions for ive programmers.

Deep LSTMs and GRUs [42] with multiple layers demonstrated
a remarkable capability to generate representations from long in-
put sequences. In this work, we investigate both LSTM and GRU
capabilities of extracting code authorship attributions from TF-IDF
code representations, which are a good it because of the scale of
our problem.; we will elaborate on this investigation in section 4.2.
The TF-IDF representations are then fed into our deep learning
structure as one sequence per code sample to generate high quality
representations that enable accurate authorship identiication. To
examine the characteristics of TF-IDF, we visualized TF-IDF val-
ues of top-30 terms of ive authors. For visualizing code iles of a

programmer, we used the Principal Components Analysis (PCA).
The PCA is a statistical tool that is widely used as a visualization
technique that relects the diference in observations of multidimen-
sional data for the purpose of simplifying further analysis [8, 25].
Figure 2 shows PCA visualizations of C++ code samples for ive
programmers with nine sample each. In Figure 2(a), code iles are
presented with the initial TF-IDF features, which are insuicient
to draw a decision boundary for all programmers. In Figure 2(b),
however, the deep representations have increased the margin for
decision boundary so distinguishing programmers has become eas-
ier. This visualization of the representations space (TF-IDF features
and deep representations) illustrates the quality of representations
obtained using the deep learning technique.

3.3 RFC over Deep Representations

To identify authors, we need a scalable classiier that can accommo-
date a large number of programmers. However, the deep learning
architecture alone does not give us a good accuracy (e.g., 86.2%
accuracy for 1,000 programmers). Instead of using the softmax clas-
siier of the deep learning architecture, we use RFC [12] for the
classiication, and by providing the deep representation of TF-IDF
as an input. RFC is known to be scalable, and our target dataset has
more than 8,000 authors (or classes) to be identiied. Such a large
dataset can beneit from the capability of RFC.

Our authorship identiier is built by feeding a TF-IDF-based
deep representation extracted by RNN and then classifying the
representation by RFC. This hybrid approach allows us to take
advantage of both deep representation’s distinguishing attribute
extraction capability and RFC’s large scale classiication capability.

4 DL-CAIS: DEEP LEARNING-BASED CODE
AUTHORSHIP IDENTIFICATION SYSTEM

Our approach for large-scale code authorship identiication has
three phases: preprocessing, representation through learning, and
classiication. We briely highlight those phases in the following
and explain each phase of the proposed approach in more details
in the subsequent subsections.
Preprocessing. The irst phase starts with data preprocessing to
handle code samples and generate initial representations. The initial
representations of code samples are later fed into a deep learning
architecture to learn more distinctive features. Finally, deep repre-
sentations of code authorship attributions are used to construct a
robust random forest model. Figure 3 illustrates the overall structure
of our proposed system. In the irst phase, a straightforward mech-
anism is used to represent source code iles based on a weighting
scheme commonly used in information retrieval.
Representation by Learning. This phase includes learning deep
representations of authorship from less distinctive ones. Those
representations are learned using an architecture with multiple
RNN layers and fully-connected layers.
Classiication. After training the deep architecture, the resulting
representations are used to construct a random forest classiier with
300 trees grown to the maximum extent.
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Figure 3: A high-level illustration of the Deep Learning-based Code Authorship Identiication System (DL-CAIS). This illustra-

tion shows the three phases of preprocessing (TF-IDF feature representation), better representation through learning (using

the RNN and fully-connected layers), and the classiication (using 300 trees in a random forest classiier).

4.1 Data Preprocessing

Code iles are represented by TF-IDF, as described in section 3.1.
TF-IDF is a standard term weighting scheme commonly used in in-
formation retrieval and document classiication communities.While
we could have used TF instead, we use the TF-IDF to minimize the
efect of frequent terms in a given corpus. This is due to the ob-
servation that more distinctive terms appear in certain documents
(code iles) rather than in most of the corpus. In our implementa-
tion, we use several methods for optimizing the representation of
documents, such as eliminating stop words, normalizing represen-
tations, and removing indistinctive features. We note that TF-IDF
representations cover word unigrams, bigrams, and trigrams in the
presented code iles, meaning a term can be a term of one, two, or
even three words. As such, the input vector for a document di to
the deep learning model is represented as follows:

[TF-IDF(t1,di ,D),TF-IDF(t2,di ,D), . . . ,TF-IDF(tn ,di ,D))] ,

where n is the total number of terms in the corpus D. To train our
model, a set of documents for each user is used to calculate the
above vector. However, targeting a corpus of thousands of code
iles may lead to high-dimensional vector representations (i.e., too
many terms). Several feature selection methods that reduce the
dimensionality using statistical characteristics of features exist. In
this work, we investigated diferent feature selection methods for
representing code iles to be further fed into the deep learning
model, and we found that all approaches lead to similar results. For
every term ti and every document di , we calculate

xi =
⋃

j=1, ..., |D |

TF-IDF(ti ,dj ,D), (1)

where ∪ is a feature selection operator such as the order of term
frequency, chi-squared (χ2) value, mutual information, or univari-
ate feature selection. Using equation (1), xi ’s for all terms in the
corpus are calculated.

Feature Space. Among the n features, we choose the top-k terms
for which xi ’s are the largest to reduce the dimensionality and form
an input vector to the learning model. For simplicity, we adopt
the embedded function of selecting the top-k features by the TF-
IDF vectorizer available by the scikit-learn package, which uses the
order of term frequencies across all iles. With TF-IDF as the method
used to represent code iles, the feature space needs to be suicient
to distinguish iles’ authors. For large dataset containing thousands
of iles (e.g., more than 1,000 programmer with nine iles each), the
top-k features (for a ixed k) may or may not be suicient to enable
the model to identify authors accurately. As such, we investigated
the number of features considered to represent code iles as an
optimization problem of accuracy. This experiment suggested that
2,500 features are suicient for the subsequent experiments. The
high dimensionality is likely to introduce overitting issues, but we
addressed the overitting issues by two regularization techniques
(See section 4.2), and also conducted all the experiments by repeated
k-fold cross validations (See section 5). Figure 4(a) shows the impact
of feature selection, using four diferent approaches, on the accuracy
of our approach using TF-IDF features in identifying code authors.
In this experiment, we use 1,000 features to identify authors in
a 250 C++ programmers experiment. The results demonstrate a
substantial accuracy rate (of over 96%) for the given problem size.
In Figure 4(b), we demonstrate the impact of the number of the
selected TF-IDF features on the accuracy of the classiier. We note
that the accuracy increases up to some value of the number of
features after which it decays quickly. The accuracy, even with the
smallest number of features, is relatively high.

4.2 Deep Representation of Code Attributes

For deep representations, we usedmultiple RNNs and fully-connected
layers in a deep learning architecture. For our implementation, we
used TensorFlow [4], an open source symbolic math library for
building and training neural networks using data low graphs. We
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Figure 4: Feature selection analysis

ran our experiments on a workstation with 24 cores, one GeForce
GTX TITAN X GPU, and 256GB of memory. We note that our use
of the GeForce GTX TITAN X GPU is purely performance driven,
and the speciic platform does not afect the end-results. Upon the
release of our scripts and data, our indings can be reproduced on
any other experimental settings.
Addressing Overitting. To control the training process and pre-
vent overitting, two diferent regularization techniqueswere adopted.
The RNN layers in our deep learning architecture included a dropout
regularization technique [44]. In essence, this technique randomly
and temporally excludes a number of units on the forward pass and
weight updates on the backward pass during the training process.
The dropout regularization technique has been shown to enable
the neural network to reach better generalization capabilities [44].

The second technique concerns the fully-connected layers. For
that we use the L2 regularization, which penalizes certain parameter

conigurations: given a loss function loss(θ , D) = 1
n

∑n
i=1 d(yi , ŷi ),

where θ is the set of all model parameters, D is the dataset of length
n samples, and d() indicates the diference between DNN’s output
ŷi and a target yi , the regularization loss becomes Regloss (θ ,D) =
1
n

∑n
i=1 d(yi , ŷI

′

i ) + [λ × Reg(θ )], where λ is a constant that con-

trols the importance of regularization and Reg(θ ) = (
∑ |θ |
j=0 |θ j |

p )
1
p ,

where p = 1 or 2 (hence, the L1 and L2 nomenclature).
Selecting Layers. The parameters of our inal architecture of the
deep learning model were chosen after various iterations of ex-
periments, upon which we chose three RNN layers with dropout
keep-rate of 0.6, followed by three fully-connected layers with ReLU
activation. Each of the fully-connected layers has 1024 units except
the last layer, which has 800 units representing the dimensional-
ity of code authorship features for a given input ile. During the
representation learning process, this architecture is connected to
the softmax output layer that represents the class of authors to
direct the training process. The training process follows a super-
vised learning approach, where only the intended model is meant
to provide a data transformation that leads to the best probability
of its correct class label. Targeting a large-scale code authorship
identiication process with thousands of programmers (thousands
of classes), the deep learning architecture alone does not accurately
identify programmers (86.2% accuracy for 1000 programmers). Thus,
we use the output of layer Lk−1 (where the Lk is the softmax layer)
to be the deep representations of code authorship features. Deep
representations of code authorship features are then subjected to a
classiication process using RFC (section 3.3), which is proven to be

robust and scalable for large datasets. The weights of the learning
network were initialized using a normal distribution of small range
near 0, a small variance, and mean of 0.
Training Procedure. To train our deep learning architecture, we
used TensorFlow’s Adaptive Moment estimation (Adam) [32] with

a learning rate of 10−4, and without reducing the learning rate
over time. Adam is an eicient stochastic optimization method that
only requires irst-order gradients with little memory requirements.
Using estimations of the irst two moments of the gradients, Adam
assigns diferent adaptive learning rates for diferent parameters.
This method was inspired by combining the advantages of two
popular stochastic optimization methods, AdaGrad [23], which is
eicient for handling sparse gradients, and RMSProp [47], which is
eicient for on-line and non-stationary settings [32].
Further Optimizations. In the training process of the deep learn-
ing architecture, we used a mini-batch size ranging from 64 to 256
observations. The idea of using mini-batches reduces the variance
in gradients of individual observations since observations may be
signiicantly diferent. Instead of computing the gradient of one
observation, the mini-batch approach computes the average gradi-
ent of a number of observations at a time. This approach is widely
accepted and commonly used in the literature [42]. The training
termination mechanism was either to reach 100,000 iterations or to
achieve an early termination threshold for the loss value.

4.3 Code Authorship Identiication

Using deep authorship features learned in section 4.2, we construct
an RFC for code authorship identiication. In doing so, and based on
various experiments, we select 300 decision trees for an RFCÐthis
coniguration has shown to provide the best trade-of between the
model construction time and its accuracy [19].
Implementation. We used scikit-learn to implement the RFC us-
ing the default settings for building and evaluating features on
each split, and all trees were grown to the largest extent without
pruning. Following the approach adopted by [19], we report results
of test accuracy using stratiied k-fold cross-validation [33], where
k depends on the number of observations per class in the dataset
(i.e., 9-fold used for 9 iles per author, 7-fold for 7 iles per author,
and so on). The k-fold cross-validation technique aims to evalu-
ate how well our model will generalize to an independent dataset.
In this model, the original dataset is randomly partitioned into k
equal-sized subsets. Of the k subsets, a single subset is used for
testing, and the remaining k − 1 subsets are used for training. This
cross-validation is repeated k times, where each subset is given a
chance to be used for testing the model built from the k − 1 sub-
sets, and the evaluation metric (e.g., accuracy) is the computed as
average of the k validations.
Parameters Tuning. Through various experiments we conirm
that choosing less than 300 trees (and as few as 100 trees) may
degrade the accuracy by only 2%.

5 EVALUATION AND DISCUSSION

In this section, we present the results of several experiments to
address various possible scenarios of our identiication approach.
In our evaluation, we deliver the following: (1) We present results
of code author identiication over a large dataset. We demonstrate
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our central results for programmer authorship identiication and
how our approach scales to 6,635 programmers with nine iles each
and to 8,903 programmers with seven iles each. Our experiments
cover the entire Google Code Jam dataset from 2008 to 2016, an
unprecedented scale compared to the literature (see Table 1). (2)
We investigate our system’s performance with fewer code iles per
author and demonstrate its viability. (3) We evaluate the robustness
of our identiication system under programmers’ style evolution
and change in development environment, and demonstrate that
changes minimally afect the performance of our approach. We
complement this study by exploring the temporal efects of pro-
gramming style on our approach of identiication. (4) We push the
state of identiication evaluation by looking into mixed language
identiication. Particularly, we show results using two language iles
for programmers (C and C++, Java and C++, and Python and C++).
(5) We examine how of-the-shelf obfuscators afect our system’s
performance. Our results are promising: we show that it is possible
to identify authors with high accuracy, which may have several
privacy implications for contributors who want to stay anonymous
through obfuscation (see section 1). (6) We investigate the appli-
cability of our approach using real-world dataset collected from
Github, including two programming languages (e.g., C and C++).

5.1 Data Corpus

The Google Code Jam (GCJ) is an international programming com-
petition run by Google since 2008 [1]. At GCJ, programmers from
all over the world use several programming languages and develop-
ment environments to solve programming problems over multiple
rounds. Each round of the competition involves writing a program
to solve a small number of problemsÐthree to six, within a ixed
amount of time. We evaluate our approach on the source code of
solutions to programming problems from GCJ. The most commonly
used programming languages at GCJ are C++, Java, Python, and
C, in order. Each of those languages has a suicient number of
source code samples for each programmer, thus we use them for
our evaluation. For a large-scale evaluation, we used the contest
code from 2008 to 2016, with general statistics as shown in Table 2.
The table shows the number of iles per author across years, with
the total number of authors per programming language and the
average ile size (lines of code, LoC). For evaluation, we create the
following three dataset views (Tables 2ś4):

(1) Dataset 1: includes iles across all years from 2008 to 2016
in a łcross-yearsž view, as shown in Table 2.

(2) Dataset 2: consists of code iles for participants drawn from
2015 and 2016 competitions for four programming languages,
as shown in Table 3.

(3) Dataset 3: consists of programmers who wrote in more than
one language (i.e., Java-C++, C-C++, and Python-C++) as
shown in Table 4.

Number of Files. In [19], the use of nine iles per programmer for
accuracy is recommended. Our approach provides as goodśor even
betterśaccuracy with only seven iles, as shown in ğ5.3.

5.2 Large-scale Authorship Identiication

Experiment. In this experiment, we used dataset 1 in Table 2.
There are four large scale datasets corresponding to four difer-
ent programming languages with programmers who have exactly

Table 2: Datasets used in our study with the corresponding

statistics, including the number of authors with at least a

speciic number of iles across all years.

Competition

Year

Author

Files

No. of Authors for Languages

C++ C Python Java

Across Years 9 6635 327 2300 1279

Across Years 7 8903 566 3458 1952

Across Years 5 12411 1156 5525 3345

Average Lines of Code 71.53 65.20 44.44 86.70

Table 3: Two datasets with the corresponding author counts

for authorswhohad seveniles at theGoogleCode Jam (GCJ)

2015 and 2016 competitions.

Competition

Year

Author

Files

No. of Authors for Languages

C++ C Python Java

2015 7 2241 41 398 132

2016 7 1744 21 390 317

across 3 years* 7 292 NA 44 50

*Programmers participated in 2014, 2015 and 2016

Table 4: A dataset used in our study to demonstrate identi-

ication across multiple languages. The dataset includes au-

thors with nine iles written in multiple languages.

Competition

Year

No. of Authors for Multiple Languages

C++-C C++-Java C++-Python

Across Years 1897 855 626

nine code iles (irst row in Table 2). The number of code iles
per author in this experiment was suggested by [19] to be sui-
cient for extracting distinctive code authorship attribution features.
In our experiment, we started each dataset with a small number
of programmers and increased this number until we included all
programmers in the dataset. In particular, we used an RFC with
stratiied 9-fold cross validation to evaluate the accuracy of iden-
tifying programmers. We repeated the k-fold cross validation ive
times with diferent random seeds and reported the average.
Evaluation Metric. For evaluation, we use the accuracy, deined
as the percentage of code iles correctly attributed over the total
number of tested code iles. Using the accuracy instead of other
evaluation metrics (e.g. precision and recall) is enough because the
classes are balanced in terms of the number of presented iles per
class in the dataset.
Results. Figure 5 shows how well our approach scales for a large
number of programmers, and for the diferent programming lan-
guages. The results report the accuracy when using diferent RNN
units in learning code authorship attribution and RFC for authors
identiication (i.e., using either LSTM-RFC or GRU-RFC unit). In
Figure 5(a), the LSTM-RFC performance results show that our ap-
proach achieves 100% accuracy for 150 C++ programmers with
randomly selected nine code iles. We note here that FPR is trivially
computed as (1 - accuracy), because the dataset is balanced. As we
scale our experiments to more programmers, the accuracy remains
high, with 92.2% accuracy for 6,635 programmers. Given the same
experimental coniguration, similar results are obtained for the
Java programming language, as illustrated in Figure 5(b) with 100%
accuracy when the number of programmers is 50 programmers.
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Figure 5: Accuracy of authorship identiication of programmers with nine sample code iles per programmer in four program-

ming languages (C++. Java, Python, and C). Notice that the accuracy is always higher than 92% even with the worst of the two

options of classiiers, and decay in the accuracy is insigniicant despite a signiicant increase in the number of programmers.
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Figure 6: Accuracy of authorship identiication of programmers with seven sample code iles per programmer in four program-

ming languages (C++. Java, Python, and C). Notice that the accuracy is always high even with large number of programmers.

Upon scaling the experiments to more programmers, we achieve
99.42% accuracy for 150 programmers, and 95.18% accuracy for
1,279 programmers. For the Python language dataset, our approach
achieved an accuracy of 100% for 100 programmers, 98.92% for
150 programmers, and 94.67% for 2,300 programmers, as shown
in Figure 5(c). Finally, for the C programmers, Figure 5(d) shows
that the accuracy reaches 100% for 50 programmers, 98.56% for 150
programmers, and 95.2% for the total of 327 programmers. These
results indicate that both deep LSTMs and GRUs are capable of
learning deep representations of code authorship attribution that
enable achieving large scale authorship identiication regardless of
the used programming language.

5.3 Efect of Code Samples Per Author

The availability of more code samples per author contributes to
better code authorship identiication, whereas less code samples
restrain the extraction of distinctive features of authorship [17, 19].
Experiment 1: Seven Files per Author. For this experiment, we
created two datasets with seven and ive code samples per pro-
grammer for four diferent languages, as shown in Table 2 (second
row). We used RFC with stratiied 7-fold cross validation to evaluate
the accuracy of identifying programmers at the dataset with seven
iles per programmer. As the number of available code samples per
author decreased, we found that the number of authors increased

Table 5: Results of the accuracy of our approach in author-

ship identiication for programmers who solved seven prob-

lems using the C++ programming language.

Competition Year # Authors LSTM-RFC GRU-RFC

2015

150 98.98 98.24

300 98.64 97.94

450 98.1 97.6

600 97.56 97.21

750 97.28 96.67

900 96.34 96.4

1000 96.32 95.98

1500 95.88 95.22

2000 95.67 94.9

2241 95.23 94.67

2016

150 99.12 98.67

300 98.34 98.31

450 98 97.62

600 97.54 96.84

750 97.28 96.18

900 96.7 95.64

1000 96.37 94.88

1500 95.66 94.14

1744 95.17 93.54

(Table 2). The goal of this experiment is to investigate the efects of
having less iles per author on the accuracy of our approach.
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Figure 7: Accuracy comparison of authorship identiication of programmers in case of ive, seven, and nine sample code iles

per programmer in four programming languages (C++. Java, Python, and C). Notice that the accuracy is always higher than

92%, and regardless of the number of authors.While best results are achieved for the larger number of iles, the lowest number

of iles (of 5) still provides ∼ 92% in the worst case.

Results. Figure 6 illustrates the results of our approach using the
dataset of all programmers with seven code samples for four dif-
ferent programming languages. Figure 6(a) shows an accuracy of
98.24% when using LSTM-RFC for 150 C++ programmers, and an
accuracy of 92.3% for 8,903 programmers. Figure 6(b) shows an
accuracy of 99.26% for 150 Java programmers when using LSTM-
RFC, and 97.24% accuracy when scaling the experiment to 1,952
programmers. Figure 6(c) shows an accuracy of 98.24% when using
LSTM-RFC for 150 Python programmers, and an accuracy of 96.2%
when scaling the experiment to 3,458. Finally, Figure 6(d) shows the
result for C programmers, where LSTM-RFC is used: an accuracy of
96.71% for 150 C programmers, and 93.96% for 566 C programmers.
Comparison. Compared with the experimental result of identify-
ing authors using nine code samples per author, as in section 5.2,
the accuracy does not degrade even when using less code samples
per author. Moreover, the results show that our approach is still ca-
pable of achieving high accuracy even with more authors compared
to the previous experiments. This result presents the largest-scale
code authorship identiication by far, indicating that seven iles per
author are still suicient for extracting distinctive features.
Experiment 2: Five Files per Author.We created a dataset with
ive source code samples per programmer in the four diferent pro-
gramming languages, as shown in Table 2 (third row). We used RFC
with stratiied 5-fold cross validation to evaluate the accuracy of
identifying programmers at the dataset with ive iles per program-
mer. As the number of available code samples per author decreased,
we found that the number of authors increased (Table 2). The goal
of this experiment is to further investigate the efects of having
even lesser iles per author on the accuracy of our approach.
Results. Figure 7 shows the results for 1,000 programmers, demon-
strating the efect of decreasing the number of sample iles for each
author. Figure 7(a) shows that our approach provides an accuracy of
96.77% for attributing authors in 150 C++ programmers when using
LSTM-RFC. Comparing the results of those datasets with the nine
and seven source code samples for each programmer, the accuracy
loss was only 3.23% and 1.47%, respectively. As we scale to 1,000
C++ programmers, our approach achieves an accuracy of 94.84%.
This result proves that our approach still achieves high accuracy

even with fewer sample iles per programmer. The results of accu-
racy with smaller number of iles per author generalize to other
programming languages. Using the same approach and settings as
above, Figure 7(b) shows an accuracy of 98.1% and 96.42% for 150
and 1,000 Java programmers, respectively. Figure 7(c) show an accu-
racy of 97.1% and 94.32% for 150 and 1,000 of Python programmers.
Finally, Figure 7(d) shows an accuracy of 94.67% and 92.12% for 150
and 1,000 C programmers, respectively.

Using only ive code samples per author, the accuracy of our ap-
proach does not signiicantly degrade. From those experiments we
conclude that learning deep code authorship features using either
deep LSTMs or GRUs enables large scale authorship identiication
even with limited availability of code samples per author.

5.4 Efect of Temporal Changes

The literature suggests that temporal efect is a challenge for code
authorship identiication, since the programming style of program-
mers evolves rapidly with time due to their education and experi-
ence [17, 19, 28]. We investigate the impact of temporal efect on
source code authorship identiication. The experiments include two
parts: 1) exploring the existence of such impact on the identiication
process, 2) examining our approach against such efect.
Experiment 1: Temporal Efect on Accuracy. This experiment
answers the following question: Do temporal efects inluence the

accuracy of code authorship identiication?

To answer this question, we conducted an experiment where
results from identifying authors from the same year is compared
with results across diferent years throughout the competition. We
examined our approach using a dataset of source codes written by
programmers within one competition year, where all programmers
solve the same set of problems. Two datasets of GCJ competition
of the 2015 and 2016 code samples were created individually with
seven code iles per programmer, as shown in Table 3. In this experi-
ment, we used a random forest and stratiied 7-fold cross validation
to evaluate the accuracy of identifying programmers.
Results.Table 5 summarizes the results of this experiment when ap-
plying LSTM-RCF and GRU-RCF for C++ programmers in two sep-
arate years. The accuracy of code authorship identiication reaches
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Table 6: The accuracy of authorship identiication for pro-

grammers with seven samples problems (programs) using

the Java programming language.

Competition Year # Authors LSTM-RFC GRU-RFC

2015 132 99.64 99.12

2016

150 99.4 98.62

300 98.34 97.56

317 98.18 96.98

Table 7: The accuracy of authorship identiication for pro-

grammers with seven programs using the Python. Note that

the accuracy is always above 96%.

Competition Year # Authors LSTM-RFC GRU-RFC

2015

150 98.96 97.6

300 98.18 97.42

398 98 97.1

2016

150 99.1 98.6

300 98.67 97.34

390 97.94 96.47

Table 8: The accuracy of authorship identiication for pro-

grammers who solved seven problems using the C program-

ming language. Notice the accuracy is always close to 100%

Competition Year # Authors LSTM-RFC GRU-RFC

2015 41 100 99.44

2016 21 100 100

95.23% for 2,241 C++ programmers and 95.17% for 1,744 C++ pro-
grammers from 2015 and 2016 competitions, respectively. Our ap-
proach also shows high accuracy results for Java, Python, and C
programming languages, as shown in Table 6, Table 7, and Table 8.

In comparison with the cross-year dataset, results of this experi-
ment are shown to provide better accuracy, which indicates that
temporal efects impact the accuracy of code authorship identii-
cation. However, these efects are insigniicantÐe.g., only 0.74%
(=98.98%-98.24%) for C++ with seven iles in the case of the year
2015. This is part due to the power of our approach in learning
more distinctive and deep features of the studied domain.
Experiment 2: Testing Diferent Year’s Dataset from Train-

ing Dataset. In this experiment we attempt to answer the follow-
ing question: If temporal efects do exist, can a model trained on data

from one year identify authors given data from a diferent year? To
answer this question, we collected a dataset of sample codes for
programmers who participated in three consecutive years from
2014 until 2016. The dataset include seven code iles per program-
mer in each year. The total number of programmers included in the
dataset of diferent languages is shown in Table 3.
Results.We trained our models (LSTM-RFC and GRU-RFC) on data
from the year 2014 and used the data from 2015 and 2016 as a testing
set. As a result, Table 9 shows that our approach of code authorship
identiication is resilient to temporal changes in the coding style
of programmers as it achieves 100% accuracy for both Python and
Java languages and 97.65% for the 292 C++ programmers.

5.5 Identiication with Mixed Languages

Here, we investigate code authorship identiication for program-
mers writing in multiple programming languages. In particular,
in this section we attempt to answer the following question: is

Table 9: The accuracy of authorship identiication for pro-

grammers who solved seven problems from three diferent

years (2014ś2016). The identiication models were trained

on data from 2014 and tested on data from 2015 and 2016

# Authors LSTM-RFC GRU-RFC

C++ 292 97.65 96.43

Python 44 100 100

Java 50 100 100

it possible to identify programmers writing in multiple languages

using one model trained with multiple languages? Some program-
mers develop programming skills in multiple languages and use
the preferable one based on the problem or the job at hand. To this
end, we attempt to understand whether learning about a program-
mers’ style in multiple languages without recognizing languages
contributes in identifying the programmer given codes written in
multiple languages. Despite the natural appeal to this problem and
its associated research questions, there is no prior research work
on this problem. Thus, we proceed to understand the potential of
identiication for multiple languages using our approach.
Experiment 1.We use dataset 3 (Table 4), which corresponds to
authors with nine iles (selected randomly) written in multiple pro-
gramming languages across all years. For training, we fed code iles
in two languages without letting it know the languages (thus, the
training process is oblivious to the language itself). For testing, we
also fed code iles to the system without indicating what language
they are written in (thus, the testing process is oblivious to the
language too). Therefore, we aim to demonstrate that our system is
language-oblivious even under this (stronger) mixed model.
Results. Figure 8 shows the accuracy of our approach with three
datasets: C++/C, C++/Java, and C++/Python. Figure 8(a) shows an
accuracy of 96.34% for a dataset of 626 C++/C programmers with
LSTM-RFC, and its accuracy of 97.52% when used with LSTM-RFC
on 855 C++/Java programmers, as illustrated in Figure 8(b). For the
C++/Python dataset, Figure 8(c) shows that our approach provides
an accuracy of 97.49% for 1,879 programmers.
Key Insight. The reported test accuracy follows a stratiied cross-
validation, where every code ile has been tested and contributed to
the reported accuracy by being used in building the model. There-
fore, the model is tested to identify programmers based on code
samples written in a language that might not be present in the
training data. This experiment shows that our approach is oblivi-
ous to language speciics. Addressing a dataset of authors writing
in multiple languages, our deep learning architecture is able to
extract high quality and more distinctive features, preserving code
authorship attributions through diferent programming languages.

Another observation is the non-monotonic results achieved us-
ing LSTM-RFC and GRU-RFC when extending the number of in-
cluded authors in the dataset. As bothmodels are parametric models,
their performance depends on inding the best parameters within a
ixed number of training iterations. Thus, the random initialization
at the beginning might help the model converge to better results
faster than the other (if at all). The non-monotonic results (1-2%
diference) are explained by this optimality and convergence in
independent runs with the ixed iterations.
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Experiment 2. Another experiment was conducted to show the
capability of our approach in identifying authors where the identii-
cation features are entirely extracted from a diferent programming
language. The aim of this experiment is to answer the following
question: Given samples of code written by programmers in one lan-

guage (e.g., C++), is it possible to identify those programmers when

writing in a diferent language (e.g., C)? From the 1,897 program-
mers who used C++ and C in dataset 3 (Table 4), we extracted a
dataset of 224 programmers, where 70% of the samples per author
are written in C++ while the remaining 30% are written in the C
language. Using our approach, we trained an LSTM-RFC using the
70% of samples written by the 224 programmers in C++ and tested
the LSTM-RFC model on the remaining 30% of C samples. As a
result, our approach achieved 90.29% of accuracy for identifying
programmers with features extracted from code written by them
in a diferent programming language, highlighting its language-
agnostic identiication capabilities.

5.6 Identiication in Obfuscated Domain

The basic assumption for the operation of our approach is that
TF-IDF can be extracted from the original source code, presumably
from an unobfuscated code. As such, one potential way to defeat
our approach of authorship analysis (e.g., in a malware attribution
application) is to obfuscate the code. In such a scenario, the under-
lying model would be built (in the training phase) using a certain
dataset, and in the actual operation an obfuscated ile would be
presented to the model for identiication. Our approach, if imple-
mented in a straightforward manner, would possibly fail to address
this circumvention technique. Thus, our question is if the model
is trained with obfuscated codes, will it be able to identify authors
correctly if obfuscated codes are presented for testing?
Assumption.We examine how obfuscation afects our approach,
and whether it would be possible to still get attribution on obfus-
cated iles for testing obfuscated iles. This requires the assumption
that we know what obfuscation technique was used, and we trans-
form the training set before building the model, which is the clear
limitaion of our approach. Deciding what obfuscation technique is
used is out of scope of this paper, but every obfuscation tools have
a unique technique to amplify obfuscation efect, which would be a
hint to ind the obfuscator.
Obfuscation Tools. Diferent obfuscation tools are available, and
two among them were chosen to evaluate our approach: Stunnix
[2] and Tigress [3]. The main reason for choosing these two ob-
fuscation tools is because each represents a diferent approach
for code-to-code obfuscation. Stunnix is a popular of-the-shelf
C/C++ obfuscator that gives code a cryptic look while preserving
its functionality and structure. Tigress, on the other hand, is a more
sophisticated obfuscator for the C language; it implements function
virtualization by converting the original code into an unreadable
bytecode. For our experiment on code authorship identiication of
Tigress-obfuscated code, we turned on all of the features of Tigress.
Experiment 1: Stunnix. The irst experiment is targeted towards
a C++ dataset of 120 authors with nine source code iles obfuscated
using Stunnix. Our approach was able to reach 98.9% accuracy on
the entire obfuscated dataset of 120 authors and 100% accuracy on
an obfuscated dataset of 20 authors. Figure 9(a) shows the accuracy

achieved using our approach on diferent Stunnix-obfuscated C++
datasets ranging from 20 to 120 authors using two diferent RNN
units. The result of this experiment indicates that our approach is
robust and resistant to of-the-shelf obfuscator.
Experiment 2: Tigress. We use a C dataset of 120 authors with
nine source iles each, obfuscated using Tigress. Even with this
sophisticated obfuscator, our approach achieves 93.42% on the entire
dataset while maintaining an accuracy of over 98% on a subset of
20 authors. Figure 9(b) shows the achieved accuracy on diferent
Tigress-obfuscated C datasets ranging from 20 to 120 authors using
two diferent RNN units. The results also indicate the resilience of
our approach to sophisticated obfuscators such as Tigress. Despite
the unreadability of the obfuscated code using Tigress, whichmakes
such obfuscated code unreadable, the result of our experiment
highlights that code iles are no longer unidentiiable.

5.7 Identiication with a Real-world Dataset

In this section, we examine our approach on real dataset of source
code samples collected from GitHub. The collected dataset includes
code samples from 1987 public repositories on GitHub, which list
C and C++ as the primary language written by one contributor.
After processing the repositories and removing incomplete data,
the collected C++ and C datasets included 142 and 745 program-
mers, respectively, with at least ive code samples each. Since some
authors have more than 10 samples, we have randomly selected
10 samples per author. For the ground truth of our dataset, we col-
lected repositories with a single contributor under the assumption
that the collected samples are written by the same contributor of
the repository. We acknowledge that this assumption is not always
valid, because parts of the code samples might have been copied
from other sources [21]. Even under those acknowledged limita-
tions of the ground truth, our evaluation is still conservative with
the respect to the end results: it attempts to distinguish between
code samples that may even include reused codes across samples.
Results. Figure 10 shows the results of our approach using GitHub
C++ and C datasets. Figure 10(a) shows an accuracy of 100% when
using LSTM-RFC for 50 C++ programmers and 95.21% for 147 pro-
grammers. Figure 10(b) shows an accuracy of 94.38% for 745 C pro-
grammers using LSTM-RFC. This result shows that our approach
is still efective when handling a real-world dataset.
Key Insight. The reported results using the GitHub dataset show
some accuracy degradation in comparison with the results obtained
using GCJ dataset given the same number of programmers. This
degradation in the accuracy might be because of the authenticity
of the dataset ground truth. The assumption behind establishing
the ground truth for our dataset is only true to some extent since
the contributor of a GitHub repository could copy code segments
or even code iles from other sources. Such ground truth problem
inluences the result of the authorship identiication process. In
real-world applications, this problem does not occur much often
since most scenarios entails having authentic dataset.

6 LIMITATIONS

While our work provides a high accuracy of code author identi-
ication across languages, it has several shortcomings which we
outline in the following.
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(c) Python/C++ authors.

Figure 8: The accuracy of the authorship identiication of programmers with sample codes of two programming languages.
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(a) C++ obfuscated with Stunnix.
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(b) C code obfuscated with Tigress.

Figure 9: The accuracy of authorship identiication with ob-

fuscated source code, showing promising results even with

the more sophisticated obfuscation approach (Tigress).
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(a) GitHub C++ dataset.

90

91

92

93

94

95

96

97

98

99

100

100 250 500 745

A
c
c
u
ra

c
y
 (

%
) 

Number of authors (Programmers) 

LSTM-RFC

GRU-RFC

(b) GitHub C dataset.

Figure 10: The accuracy of the authorship identiication of

programmers using GitHub dataset, showing promising re-

sults even with real-world code samples.

Multiple authors. All experiments in this work are conducted
under the assumption that a single programmer is involved in
each source code sample. One shortcoming of our work is that this
assumption does not always hold in reality, since large software
projects are often the result of collaborative work and team eforts.
The involvement of multiple authors in a single source code is
almost inevitable with the increasing use of open development
platforms. Using our approach to identify multiple authors can be
an interesting direction for future work.
Authorship confusion. Since this work adopts a machine learn-
ing approach to identify programmers, it will only succeed if similar
patterns from the training data are captured in the test dataset. As
a pathological case, consider the authorship confusion attack or

mimicry attack where the tested samples are contaminated to evade
identiication. Such contamination in the code could cause substan-
tial changes of the programming style, thus making it diicult (if
not impossible) to correctly identify the involved programmer.
Code size. The experiments in this work are conducted using
datasets of source code samples that exhibit suicient informa-
tion (i.e., adequate average lines of code) to formulate distinctive
authorship attribution for programmers. However, we have not
investigated the minimal average lines of code to be considered as
suicient to distinguish programmers. For example, one could imag-
ine that even though a small sample of code (e.g., with less than 10
lines of code) can present enough information to correctly identify
the programmer, it is diicult to generalize this observation broadly.
Investigating the suicient code size to identify programmers is
not examined in this work, and is an interesting future direction.

7 CONCLUSION AND FUTUREWORK

This work contributes to the extension of deep learning applica-
tions by utilizing deep representations in authorship attribution. In
particular, we examined the learning process of large-scale code
authorship attribution using RNN, a more eicient and resilient
approach to language-speciics, number of code iles available per
author, and code obfuscation. Our approach extended authorship
identiication to cover the entire GCJ dataset across all years (2008
to 2016) in four programming languages (C, C++, Java and Python).
Our experiments showed that the proposed approach is robust and
scalable, and achieves high accuracy in various settings. We demon-
strated that deep learning can identify more distinctive features
from less distinctive ones. More distinctive features are more likely
to be invariant to local changes of source code samples, which
means that they potentially possess greater predictive power and
enable large-scale code identiication. One of the most challenging
problems that authorship analysis confronts is the reuse of code,
where programmers reuse others’ codes, write programs as a team,
and when a speciic format is enforced by the work environment
or by code formatters in the development environment. In the fu-
ture, we will explore how code reuse afects the performance of our
approach, and code authorship identiication in general.
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