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AUToSen: Deep-Learning-Based Implicit
Continuous Authentication Using
Smartphone Sensors

Mohammed Abuhamad, Tamer Abuhmed, David Mohaisen

Abstract—Smartphones have become crucial for our daily
life activities and are increasingly loaded with our personal
information to perform several sensitive tasks, including, mobile
banking and communication, and are used for storing pri-
vate photos and files. Therefore, there is a high demand for
applying usable authentication techniques that prevent unautho-
rized access to sensitive information. In this article, we propose
AUToSen, a deep-learning-based active authentication approach
that exploits sensors in consumer-grade smartphones to authenti-
cate a user. Unlike conventional approaches, AUToSen is based on
deep learning to identify user distinct behavior from the embed-
ded sensors with and without the user’s interaction with the
smartphone. We investigate different deep learning architectures
in modeling and capturing users’ behavioral patterns for the
purpose of authentication. Moreover, we explore the sufficiency
of sensory data required to accurately authenticate users. We
evaluate AUToSern on a real-world data set that includes sen-
sors data of 84 participants’ smartphones collected using our
designed data-collection application. The experiments show that
AUToSen operates accurately using readings of only three sen-
sors (accelerometer, gyroscope, and magnetometer) with a high
authentication frequency, e.g., one authentication attempt every
0.5 s. Using sensory data of one second enables an authentica-
tion F1-score of approximately 98 %, false acceptance rate (FAR)
of 0.95%, false rejection rate (FRR) of 6.67%, and equal error
rate (EER) of 0.41%. While using sensory data of half a second
enables an authentication F1-score of 97.52%, FAR of 0.96%,
FRR of 8.08%, and EER of 0.09%. Moreover, we investigate
the effects of using different sensory data at variable sampling
periods on the performance of the authentication models under
various settings and learning architectures.

Index Terms—Active authentication, continuous authentica-
tion, deep-learning-based authentication, mobile sensing, smart-
phone authentication.
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I. INTRODUCTION

O DATE, the primary method for accessing smartphones

is restricted to methods addressing the point-of-entry
authentication, which rely on knowledge (e.g., token or pass-
word) or physiological biometrics (e.g., fingerprint or face).
Knowledge-based techniques include several modalities, such
as passwords, pattern-based passwords, and password-based
on biometric features [39]. Despite the simplicity and relia-
bility of knowledge-based techniques, they are inherently vul-
nerable to several attacks, such as shoulder surfing attack [34]
and smudge attack [6]. Such vulnerabilities are tackled with
physiological biometrics (e.g., fingerprint and face), which
enabled various stronger authentication techniques on smart-
phones [30], [39]. However, most of these techniques raise
several privacy and usability concerns [50]. Both knowledge-
based and physiological biometrics-based methods fail to offer
security and access control beyond the point of entry, i.e.,
allowing for continuous authentication of the user. Moreover,
such methods assume the same level of security across all
applications once access to the device is granted, posing a sig-
nificant vulnerability [12]. Therefore, there is an increasing
need for efficient authentication methods to operate trans-
parently and continuously based on behavioral biometrics of
users. Most of today’s smartphones are equipped with many
built-in sensors, e.g., accelerometer, gyroscope, magnetometer,
proximity sensor, barometer, etc. These sensors enable implicit
authentication techniques that capture the user’s behavioral
characteristics from the readings of these sensors. Since this
data can be obtained with or without the user’s interaction,
the sensors-based authentication techniques provide a conve-
nient and intuitive access control for legitimate users. These
authentication techniques are often referred to as “transparent,
continuous, implicit, active, passive, nonintrusive, nonob-
servable, adaptive, unobtrusive, and progressive” [30]. The
implicit authentication works as a support method rather than
an alternative to the point-of-entry conventional authentica-
tion techniques (using either knowledge-based or physiological
biometrics-based authentication), where the primary task of
the continuous authentication module is to detect any adver-
sary, who attempts to control the smartphone, to prompt the
user for reauthentication and regaining control. Therefore, both
explicit and implicit authentication methods should co-exist
to ensure device security. An alternative setting for utilizing
implicit authentication alongside the point-of-entry approaches
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is the two-factor authentication (2FA), where the implicit
authentication is used as an additional factor to the primary
authentication modality.

In this article, we propose AUToSen, a deep-learning-based
implicit authentication technique. AUToSen exploits data from
the smartphone embedded sensors to capture users’ behav-
ioral patterns for authentication. Our proposed approach has
the following advantages.

1) Unlike the conventional authentication techniques which
prompt users on a specific time, our approach keeps
implicitly authenticating the user in the background.

2) This article measures the performance of AUToSen in
the task of continuous authentication in a realistic sce-
nario, where the users use their own smartphones freely
without any usage constraints, through a noninvasive
background service that keeps authenticating users with
or without their interactions with their smartphones.

3) The proposed approach does not require any sensitive
software or hardware permissions that could invade the
user’s privacy.

4) We have conducted comprehensive experiments and
illustrated the performance of our proposed approach in
different settings.

We explore the use of different sensors to capture distinct
user’s behavioral characteristics. Starting with five sensors,
our experiments show that readings from only three sensors—
accelerometer, gyroscope, and magnetometer—are sufficient to
model users’ behavior with high accuracy for the authentica-
tion purpose. Considering a sampling rate of 64 Hz, readings
of sensory data within one second provides an Fl-score of
approximately 98%. Even when using readings for half a sec-
ond, the three sensors data allowed an authentication F1-score
higher than 97%.

Several works investigated user’s identification based on
specific activities (i.e., walking, standing, sitting, running,
walking upstairs, and walking downstairs) and only when the
user is interacting with the smartphone [16], [36]. However, to
the best of our knowledge, this article is the first to propose a
high-frequency deep-learning-based approach for continuous
user authentication on smartphone using built-in sensors with-
out setting any constraints on the user interaction or activity
types. After building the authentication model, AUToSen is
capable of operating in a high-frequency manner as it requires
the readings of a user’s sensors data for a short period (e.g.,
0.5 s or 1 s) to passively authenticate the user during the daily
activities. We exploit the sensors embedded in smartphones
to design and build an accurate, efficient, and continuous
authentication system and thoroughly evaluate it against sev-
eral options; e.g., the number of sensors, model size, and deep
learning architectures.

Contributions: ~ Our
as follows.

1) We propose AUToSen of a deep-learning-based implicit
and continuous authentication system using built-in
smartphone sensors. The experiments are conducted
using a real-world data set that includes data of 84 par-
ticipants. The collection of data is conducted using our
data-collection application.

contributions are  summarized
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2) The proposed approach is lightweight and does not
require a complicated feature extraction process that can
be computationally demanding and energy consuming,
by exploiting the capabilities of long short-term memory
(LSTM) to capture users’ behavioral traits directly from
the readings of sensory data.

3) We explore the effects of using a collection of differ-
ent embedded sensors in the user authentication task
modeled by different LSTM architectures and settings.
Using AUToSen, the experiments show that readings
of three sensors, namely, accelerometer, gyroscope, and
magnetometer, are adequate for a highly accurate user
authentication process.

4) We investigate the sampling period required to enable
accurate active user authentication. Our experimental
results show that AUToSen is capable of operating in real
time with the requirement of readings collected within
half a second.

5) We conducted extensive experiments to evaluate
AUToSen with different evaluation metrics and under
different settings. We show that our approach authenti-
cates users with an average Fl-score of roughly 98%
across all users using the reading of three sensors.
Moreover, we report state-of-the-art results in terms of
the false acceptance rate (FAR), FRR, and equal error
rate (EER) since AUToSen achieves an average FAR of
0.95%, FRR of 6.67%, and EER 0.41% across all users
when the sampling period is one second. While a sam-
pling period of half a second enables an average FAR
of 0.96%, FRR of 8.08%, and EER 0.09%.

6) Using simulation experiments, we demonstrate the
usability of AUToSen through our reported FAR and
FRR scores. For example, using the data of three sen-
sors (accelerometer, gyroscope, and magnetometer) with
a sampling period of one second, legitimate users are
expected to be authenticated within two seconds with a
probability of 99.56% and within three seconds with a
probability of 99.97%. When the sampling period is set
to half a second, AUToSen is expected to authenticate
legitimate users within the first second with a proba-
bility of 99.34% and with a probability of 99.99% for
authentication within only two seconds.

Organization: The remainder of this article is structured as
follows. We review related works in Section II. In Section III,
we present our deep-learning-based approaches for continu-
ous and implicit authentication on smartphones. We proceed
with detailed experimental results from our approaches in
Section IV. We provide our conclusion in Section V.

II. RELATED WORK

Recent studies show the significance of sensory data col-
lected from mobile devices in a variety of applications,
such as modeling human behavior [16], user authentica-
tion [5], [46], activity recognition [7], [16], and healthcare
assessment and monitoring [10], [14], among others [42], [44].
User authentication using mobile sensory data has shown
remarkable results in exploiting users’ physiological and
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behavioral biometrics [30]. Various techniques have been
developed to authenticate a mobile user using behavioral char-
acteristics, where a background process continuously captures
user’s usage of the device to perform an active and trans-
parent authentication, e.g., using hand-waving [15], gait [13],
[18], [31], touchscreen [6], [15], [43], electrocardiography
(ECG) [5], keystroke [20], [28], [43], voice [26], [33], sig-
nature [11], [27], and general profiling [3], [35]. These
approaches continuously authenticate mobile users by mea-
suring their behavioral characteristics while interacting with
their mobile.

Keystroke dynamics are used for continuous authentication
utilizing keystroking features. Those features include time, i.e.,
the latency between the press and release of a key (called dwell
or hold time), and latency between the release of one key and
the press of next key (called flight time). Other features are
also obtained while stroking the keys, such as the device ori-
entation, finger pressure size, and accelerometers [20], [28].
An advantage of this approach is being noninvasive and trans-
parent, although it achieves lower accuracy compared to other
techniques. Moreover, it only works when the user interacts
with the keyboard [3].

Using other biometric modalities, Zhang et al. [46] proposed
an eye movement-based continuous authentication technique
by tracking the eye movements of a VR headset wearer when
there are visual stimuli. Their system can detect 91.2% of all
imposters within 130 s. Similar work has been done on smart-
phones to track human eye movement through the built-in front
camera to explore gaze patterns for authentication [38]. Their
experiments show that the system achieves 88.73% accuracy
after tracking users’ eyes for 10 s. Arteaga-Falconi et al. [5]
proposed a mobile biometric authentication algorithm based
on electrocardiogram (ECG) collected from ECG electrodes
installed on the mobile cover. Their approach collects users’
heartbeats for four seconds to achieve an accuracy of 81.82%.
Processing and reaction, feasible deployment, and robustness
to changes in environmental conditions (e.g., light and noise
conditions) are all bottlenecks of the approach.

Since most smartphones are equipped with a variety of sen-
sors, including motion (i.e., gravity, accelerometer, gyroscope,
and magnetometer), environmental (i.e., light, temperature,
barometer, and proximity), and position sensors (i.e., GPS and
compass), recent works have used these sensors for authen-
tication [4], [16], [23], [35]. Ehatisham-ul-Haq et al. [16]
designed a continuous authentication scheme that recognizes
smartphone users based on their physical activity patterns
using accelerometer, gyroscope, and magnetometer sensors.
In their experiment, an analysis of the motion sensors was
conducted when the smartphone is strictly placed at five dif-
ferent positions on the user’s body. Amini et al. [4] proposed
DeepAuth, an LSTM-based user authentication method, which
uses accelerometer and gyroscope data to capture behavioral
patterns. The results of their experiments, conducted on data
collected from 47 participants with 10—13 m each, have shown
an authentication accuracy of 96.7% in a window of 20 s.
Zhu et al. [49] proposed RiskCog, a method that requires
3.2 s to validate users using data collected from accelerometer,
gyroscope, and gravity sensors with an accuracy of 93.8% and
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95.6% for steady and moving users, respectively. Li ef al. [25]
proposed five sensory data augmentation processes to authenti-
cate users with SensorAuth, and have shown an EER of 4.66%
with a time window of 5 s.

Zhu et al. [47] proposed a method based on users’ phone-
skating behavior using the motion sensory data. The experi-
ments were conducted using data of 20 participants and have
shown an average EER of 1.2%. Using gaits as a feature,
several works are proposed; e.g., DamaSeviCius et al. [13]
and Fernandez-Lopez et al. [18]. Li and Bours [24] proposed
an authentication scheme for smartphones using WiFi and
accelerometer to enable users accessing an application within
three seconds, with an average EER of 9.19%. Buriro et al. [8]
proposed an authentication method based on the user’s hand
micromovements and timing differences while users entering
10-digit strokes. The experiments included 97 participants per-
forming several activities. The results show that their approach
was capable of authenticating users with the true acceptance
rate (TAR) of 85.77% and FAR of 7.32%. Lee and Lee [22]
proposed an SVM-based approach for implicit user authentica-
tion. They fed their system with three mobile sensor readings
to train with 7 s of mobile data for training and 20 s detection,
with an accuracy of 90%. Lee et al. [23] showed that combin-
ing sensors’ readings from the user’s smartphone and other
wearable devices can enhance the authentication accuracy;
they reported accuracy of 98.1%, FRR of 0.9%, and FAR of
2.8% by combining reading from smartphone and smartwatch
of 35 users within 6 s. Kayacik et al. [21] designed a data-
driven approach that is temporally and spatially aware of the
mobile user using several hard and soft sensors. However, their
approach required more than 12 s to authenticate a user and
more than 717 s to detect an imposter. Zhu et al. [48] proposed
a gesture-based authentication mechanism when using the
smartphone. The model generates a sureness score to evaluate
the necessity of an authentication. Their approach achieved
75% accuracy for identifying users and 71.3% accuracy for
detecting nonowners with 13.1% false alarms.

A summary of related works and a comparison between
them, including ours, across multiple variables, are in Table I.

III. AUTOSen: OVERVIEW

We propose AUToSen, a deep-learning-based active authen-
tication system using smartphone sensors. We explore the
distinctive usage and activity patterns of smartphone users
captured by the sensory data for authentication. AUToSen
is a real-time authentication system, which collects read-
ings from the embedded sensors and feeds the data to an
authentication model to validate the smartphone users. The
authentication models are designed using LSTM-based archi-
tectures to process sequential sensory data records to capture
the behavioral patterns of users when holding their smart-
phones. Regardless of users’ activities (e.g., texting, voice
or video chatting, Internet surfing, jogging, exercising, etc.),
AUToSen aims to exploit the distinctive behavioral patterns of
users for the authentication. Using sensory data to capture such
behavioral patterns requires performing several tasks, includ-
ing data preprocessing, temporal alignment, feature extraction,
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SUMMARY OF THE RELATED WORK. IN THE FEATURES, ALL DATA IS EXTRACTED FROM, “AC” : ACCELEROMETER, “GR”: GYROSCOPE, “MA”:
MAGNETOMETER, “EL”: ELEVATION, “C0”: COMPASS, “GA”: GRAVITY, “OR”: ORIENTATION OF SMARTPHONES

Reference Technique Features-level Participants Performance Authentication Time
Draffin et al. [15] Behavioural biometric ~ Keystrokes 13 FAR = 14.0%; FRR = 2.2% 5~15 keystrokes
Mondal et al. [28] Behavioural biometric ~ Keystrokes 64 90% 500 keystrokes
Song et al. [38] Behavioural biometric ~ Eye movement 10 88.73% 10s
Zhang et al. [46] Behavioural biometric ~ Eye movement 30 90.3-93.1% 130s
Juan et al. [5] Biometric Mobile ECG sensors 10 81.82% 4~ 10s
Juan et al. [29] Biometric Wearable Sensors 37 EER =1.9% 1 ~ 4 min.
Lee et al. [22] Physical activity (Ac,Ma,Or) 4 90% 20s
Kayacik et al. [21] Physical activity (WiFi, Ac, GPS, light) 7 53.2~ 99.4% >122s
Ehatisham et al. [16]  Physical activity (Ac,Gr,Ma) 10 97.95% 180s
Zhu et al. [48] Physical activity (Ac,Gr,Co) 20 TPR = 71.30%, FPR= 31.1% 4.96s
Lee et al. [23] Physical activity (Ac,Gr) 35 FRR = 0.9%, FAR = 2.8% 6s
Amini et al. [4] Physical activity (Ac,Gr) 47 Fl-score = 96.7% 20s
Shen et al. [36] Physical activity (Ac, Gr, Touch) 48 FRR = 6.85%, FAR = 5.01% 2.89s - 3.31s
Sitova et al. [37] Physical activity (Ac,Gr,Ma) 100 EER = 7.16% ~ 10.05% ~ 60s
Fenu et al. [17] Physical activity (Camera,Ac,Gr,Ma,Touch) 100 EER = 5.95% ~ 17.56% n.a.
Li et al. [25] Physical activity (Ac,Gr) 100 EER = 4.66% 5s
Shen et al. [35] Physical activity (Ac,0Or,Ma,Gr) 102 FRR = 5.03%, FAR = 3.98% 8s
Zhu et al. [49] Physical activity (Ac,Gr, Ga) 1,513 Accuracy = 95.6% 3.2s
This work Physical activity (Touch, Ac,Gr, Ma, El) 84 FRR = 8.47%, FAR = 1.72% 1s
This work Physical activity (Ac,Gr, Ma, El) 84 FRR = 7.62%, FAR = 2.31% Is
This work Physical activity (Ac,Gr, Ma) 84 FRR = 6.67%, FAR = 0.95% Is
This work Physical activity (Touch, Ac,Gr, Ma, El) 84 FRR = 9.16%, FAR = 1.53% 0.5s
This work Physical activity (Ac,Gr, Ma, El) 84 FRR = 9.87%, FAR = 1.65% 0.5s
This work Physical activity (Ac,Gr, Ma) 84 FRR = 8.08%, FAR = 0.96 % 0.5s
0
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Fig. 1. AUToSen: Implicit authentication system overview.

and sequential modeling. Performing this task is very chal-
lenging as continuous authentication entails real-time user
validation, robust feature extraction, an accurate authentica-
tion, and acceptable usability. This article addresses these
challenges.

Assuming that each user with own pattern for activities,
we focus on validating users based on accumulative sensors
data collected from their mobile during a period of time.
The main process flow of AUToSen includes collecting the
internal sensors data of the smartphone for individual users
using background service during their activities, preprocessing
the collected data, and feeding this data to the authentication
models, which are trained to capture the behavioral patterns of
individual users, for user validation. Fig. 1 illustrates the steps
of AUToSen system which mainly consists of: data collection
of readings from the built-in sensors of the smartphone, data
preprocessing (removing corrupted data, temporal alignment
of all sensors data, and constructing sequences to feed them

N @i~
as Ty = ——— =2t —
@aT _gmin

Bach size: {32 — 128}

e Time alignment

e Sequences preparation

X {x© x® . xM

[ (i)

XeXx

Test User
es Authentication
Process

Y

to the authentication model), user authentication model, and
finally the user verification step in real time using short-period
sequences fed to the built model.

A. Data Collection

We conduct our experiments on Android smartphones to
implement and evaluate AUToSen using different approaches
and sensors data. For sensor data collections, we implemented
an Android data-collection application that transparently oper-
ates in the background to collect data from five embedded
sensors, namely, screen touch, accelerometer, gyroscope, mag-
netometer, and elevation. The data-collection application oper-
ates continuously as long as it runs to record sensor data with
timestamps. We collected mobile sensor data of 84 partici-
pants, including students, staff personnel, and professors. They
ranged in age from 19 to 37, with an average age of 25 years
(SD = 4.49). All participants were skilled smartphone users
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with at least one year’s experience. All participants conducted
their usual routine usage of smartphones for the data collection
task and remained in this article for the authentication evalua-
tion. For the data collection task, participants were asked to run
the data-collection application for five days to obtain large data
samples to investigate the effects of different sensors’ data in
capturing the behavioral patterns of users. The collected sen-
sor data includes screen touches (i.e., touch sliding or touch
tapping) when users touch their smartphones during smart-
phone usage, which covers a wide range of applications, such
as Web surfing, document/email reading, call making, picture
browsing, instant chatting, etc., sensor data (i.e., accelerome-
ter, gyroscope, magnetometer, and elevation), and timestamps
for data readings.

The accelerometer indicates the mobile orientation and mea-
sures gravitational acceleration in meter per second squared.
Each accelerometer reading is a vector Ac € R3 of x, y, and
z values that represent the phone coordinates. The gyroscope
sensor provides a 3-D vector Gr € R? for the angular rota-
tion in radians per second along the axes. The magnetometer
was used to report the magnetic field in microtesla, and each
magnetometer reading is a vector Ma € R3. We explore the
effect of different sensors in capturing the behavioral patterns
of users. We created four different data sets are as follows.

1) Five-Sensor Data Set (ToAcGrMaEl): This data set
includes data readings of five sensors (namely, touch
actions, accelerometer, gyroscope, magnetometer, and
elevation).

2) Four-Sensor Data Set (AcGrMaEl): This data set
includes data readings of four sensors (namely, data of
accelerometer, gyroscope, magnetometer, and elevation).

3) Three-Sensor Data Set (AcGrMa): This data set includes
data readings of three sensors (namely, accelerometer,
gyroscope, and magnetometer).

4) Two-Sensor Data Set (AcGr): This data set includes data
readings of two sensors (accelerometer and gyroscope).

B. Data Preprocessing

Sensor data collected from smartphones requires a pre-
processing stage for possible noise handling and temporal
alignment for sequence generation. The targeted sensory
data includes readings of five sensors, which are touch
actions, accelerometer, gyroscope, magnetometer, and eleva-
tion. Denote the collected data reading as Xl-(l) € R™ for the
user i at time step ¢, where m as the total dimension of col-
lected data. For example, m = 11 when using the five sensors
readings, given the touch data To € R! as the frequency of
touch actions within time ¢, accelerometer reading Ac € R3,
gyroscope reading Gr € R3, magnetometer reading Ma € R3,
and elevation reading EI € R!.

Handling Missing Values: Given the nature of the sensory
data, missing values are handled at the individual sensor’s
level using the specified time step. For a specific timeframe,
i.e., the sampling period (e.g., one or half a second), missing
values of touch actions indicate empty records while miss-
ing values from other sensors might be due to a cold start,
reading stability, or sensor malfunction. Missing values from
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the touch sensor are assigned a zero value. Missing values
from the elevation readings are set to the last observed value.
Missing values from other sensors are imputed using the mean
value of the previously observed data points within a window
of size five (sliding window). This process of data imputation
is a common practice for handling missing values based on
the statistics (e.g., minimum, maximum, mean, or median) of
surrounding data points, which generate adequate estimates of
missing data points [45].

Data Normalization: We normalize the collected data to
minimize the effect of noise during the data collection stage.
Moreover, since most of the dimensions of an input data
Xi(t) = X0,X1,...,Xn—1 € R™ scale the values of read-
ings from different sensors to a range between zero and
one (Xl-(t) € RIY x; € [0, 1]), it would help the machine
learning to weigh the effects of separate dimensions. The
normalization process operates on data collected within a
period of time (e.g., one or five seconds), in which nor-
malized data points are calculated Xj(t) = X0, X1, .., Xm—1
where fci = [ — M)/ — ™)) e Rlvy € [0, 1],
and xj™" and x"** are the minimum and maximum values of
the dimension i within the specified timeframe, respectively.
In our experiments, we use five seconds as the timeframe
for data normalization (i.e., continuously observing the max-
imum and minimum values of each dimension for five or ten
readings when using either the one or half a second sam-
pling period, respectively)—because it shows the best tradeoff
between effectiveness and efficiency.

Sequences Generation: The readings of sensory data are
collected with a sampling rate of 64 Hz, i.e., obtaining 64
readings per second. Even though most current devices sup-
port higher sampling rates, using 64 Hz as a sampling rate
provides a sufficient amount of data for authentication with-
out exhausting the device resources (energy and computation).
For generating sequences of sensory data, all sensor read-
ings from all sensors are aligned. Assuming we used the
data from all sensors, the aligned data can be represented as
Xi(t) = Tol@,Acf-t), Grl@,Mal@, Ell@. In our experiments, we
use a sampling period of 0.5 s and one second to generate
sequences of sensory data with a length of 32 and 64 readings
per sequence, respectively. We note that the data collection
app is designed to collect data continuously with the specified
sampling rate for as long as it is running. For our experi-
ments, we considered sensory readings that occur with active
usage status, i.e., readings are considered when a change is
recorded by at least one of the motion sensors (accelerometer
and gyroscope) as an indication of user activity (even without
directly handling the phone). The readings are considered in
inactive usage status if no changes are recorded for five sec-
onds. Eliminating readings from inactive usage status provides
a more practical and realistic scenario for modeling behavioral
patterns of users.

C. LSTM-Based User Authentication

Typically, the assigned task is to authenticate an owner of
a smartphone using his behavioral patterns extracted from
the sensors of the smartphone. To capture these behavioral
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Fig. 2. Different LSTM model architectures used for the authentication task. (a) Simple LSTM model. (b) Bidirectional LSTM model. (c) Multilayers LSTM

model.

patterns from a sequence of sensors’ readings makes the
RNN as the best candidate for this task [1], [45]. AUToSen
utilizes the recurrent neural network with LSTM [19] mod-
els for user authentication. The authentication models esti-
mate the probability of assigning input data to one of two
classes, i.e., binary classification over the legitimate user
and impostors. For an input data {Xi(o),Xi(l),...,Xl-("_l)},
the authentication model of user i estimates the probability
Poilx - (x©, xV . x" V1, 6), where 6 is the LSTM
parameters and y; = {0, 1}. LSTM is a variant of RNN,
proposed to overcome the problem of “vanishing” or “explod-
ing” of gradients when processing long sequences [9], [19].
LSTM uses the gating mechanism and memory cells Ci(t) to
process sequences at different time steps by propagating rel-
evant information and removing the irrelevant information.
Given input data X,@, the previous hidden state hf-ti]), and
the previous memory cell Xl-([_l), an LSTM unit calculates the
current hidden state h,(-t) and memory cell Cf’). First, the LSTM
calculates the values of four gates, namely, the input, forget,
output, and input modulation gates (i, f, 0, and g, respectively)
as follows:

i
f

0

sigmoid(Wxin-(t) + Whihl?"“)

sigmoid(wxfx,.(” + thhff‘”)

sigmoid(Wio X" + Wioh! ")
g = tanh(WygX{" + Wyeh!™")

where sigmoid(x) = (I +e )~ and tanh(x) = (e* —
1)(e** + 1)~!. Then, Cl@ and hl@ are calculated as follows:

¢’ =focVog
=00 tanh(Cf”)

where © is the elementwise multiplication. This mechanism
allows propagating the gradient across long time sequences,
since only relevant data passes through the input modulation
gate, and filtered data propagates through the output gate after
using the forget gate to remember necessary data. At the last
time step t = n — 1, the output probability is calculated as
P(ilX,6) = sigmoid(Wjyh" "), and the output y; = 1 if
P(yilX,0) = 0.5.

For our experiments, we investigate the performance of the
authentication task using three different LSTM-based archi-
tectures, namely, simple LSTM, bidirectional LSTM, and

multilayers LSTM. Fig. 2(a) illustrates the first architecture,
which is a simple LSTM-based authentication model. This
architecture consists of a single layer of LSTM units. The
second architecture is the bidirectional LSTM-based authenti-
cation model. Unlike the simple authentication model, where
each RNN unit i uses the information from the previous RNN
unit i — 1 to generate its current state as well as propagate
this information to the next state, the bidirectional LSTM-
based authentication model at any time step access the past
and future information to form the state of any given unit.
By accessing the information of the previous time steps and
future time steps, the model learns to better understand the
context and eliminate ambiguity. The model incorporates two
LSTMs trained to make the output decision. The first LSTM
works on sequences {Xl-(o), Xl-(l), R Xl-("_l)}, while the other
RNN operates in these sequences from the opposite direction
xD x"2 x ) as illustrated in Fig. 2(b). LSTM-
based architectures with multiple hidden layers are popular
for their exceptional scalable capability of capturing complex
patterns on a given data [1]. In this article, we also explore
the capability of the multilayers LSTM, shown in Fig. 2(c),
to authenticate a given user based on the behavioral patterns
captured from the sensory data.

LSTM-Based Model Architecture: The sensory data are
fed into the LSTM-based model for user authentication. The
simple LSTM model consists of one recurrent layer, while
multilayers LSTM consists of only two layers. Bidirectional
LSTM model consists of one bidirectional layer, i.e., two
LSTMs operating in opposite directions. All hidden recur-
rent layers of all adopted architectures consist of a number
of LSTM units ranging from 16 to 256 to evaluate the
performance of models considering the breadth of their hid-
den layers. For all adopted architectures, the output layer is
a sigmoid layer with one unit signaling the probability of
authenticating the legitimate user.

Data Set Usage: The user authentication model is trained
using data from the assigned user (the legitimate user) and
other users (as impostors data). Data from the legitimate user
are labeled as positive, while data from the wrong users are
labeled as negative. When training the model, we use data
from the legitimate user and data from ten randomly selected
users as impostors signals with a size of five folds larger
than the data size of the legitimate user (i.e., the number of
imposters’ data records are five times larger than the legiti-
mate records). We understand that this approach introduces the
class-imbalance problem; however, it is essential to emphasize
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the distinction between legitimate and imposter behaviors. To
address the class imbalance, we use class weights (percent-
age) to penalize the incorrect predictions and to weigh the
loss during the training process. Since the training process
of the authentication models follows a data-driven approach,
we use stratified tenfold cross-validation for the evaluation.
The using tenfold cross-validation is straightforward, where
the model is evaluated on each fold while using the other nine
folds for training. The reported results are the average of the
ten results obtained in each fold. This method is adopted for
training LSTM-models in all experiments.

Authentication Models Training Process: The training of
the LSTM model is an optimization process to find a set
of model’s parameters that allows performing a specific task.
Starting from random weights, the optimization process guided
by the minimization of the log cross-entropy loss enables
adjusting the model’s weights in a supervised manner. The log
cross-entropy, also known as binary cross-entropy, is defined
as follows:

N

-1
loss(0) = — > [vi x log(Pu) + (1 = i) x log(1 — Py)]

n=1

where P, refers to the conditional probability P(y;|X, 8). We
use RMSProp [41] optimization algorithm to train the authen-
tication models. The RMSProp algorithm is set with a fixed
learning rate of 1e™* to scale the estimated gradient of every
training step. For the regularization, we adopt dropout [40],
which enhances the generalization capabilities of the model.
Training With Mini-Batch Approach: For efficient train-
ing, we adopt a mini-batch approach, where a number of
input samples are packed into a tensor of predefined dimen-
sions, as [batch_size, sequence_length, sample_length], where
batch_size is ranging from 32 to 128 samples with (64 or
32) readings per sample (sequence_length) when using (one
or half a second for data sampling, respectively), and 11, 10,
9, or 6 dimensions per readings (sample_length) when using
five, four, three, or two sensors for the input data, respectively.

D. Authentication Evaluation Metrics

Classification Accuracy Metrics: We report the Fl-score in
evaluating the performance of the authentication models. The
F1-score is calculated as F1-score = 2 x (Recall x Precision) =
(Recall + Precision), where Recall = (TP) +— (TP + FN) and
Precision = (TP) = (TP + FP).

The precision and recall emphasize on the model’s
performance regarding false positive (FP) and false negative
(FN), respectively.

Authentication Evaluation Metrics: Unlike password-based
authentication systems where the user authentication claim
could pass or fail, the biometric authentication approaches
are subject to authentication errors that can be evaluated
using FAR, FRR, and EER. FAR is the rate of accepting an
imposter biometric samples as a legitimate user and calculated
as (FP) — (FP+TN). FRR is the rate of mistakenly rejecting a
legitimate user as if the user is an imposter and calculated
as (FN) = (FN 4+ TP). EER is the rate where the FAR is
equal to FRR. In our experiment, we calculate FAR, FRR,
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and EER. The FAR indicates the likelihood that the proposed
authentication approach authorizes an imposter as a legitimate
user; FRR indicates the likelihood that the proposed authenti-
cation approach incorrectly unauthorizes a legitimate user as
an impostor. Since the authentication problem here is to distin-
guish between impostors and legitimate users, we also provide
the ROC curve as a preferable method to visualize the relation
between the true positive rate (TPR) against the FP rate (FPR)
and to illustrate the classifier performance.

E. AUToSen’s Operations

AUToSen follows the general operational design for authen-
tication systems by including the two phases, namely, the
enrollment and continuous authentication phase.

User Enrollment: The enrollment phase incorporates: 1) the
data collection of users’ sensory readings from five sensors;
2) data cleaning and preprocessing; and 3) authentication model
training and evaluation. Due to the computational requirements
of the enrollment phase, the enrolment is performed on the
authentication server, responsible for training and periodically
updating users’ models. Once the model is trained and selected
by a cross-validation process, it is secured to authenticate the
assigned user. The trained model is considered fully opera-
tional as long as it maintains a high authentication accuracy.
Considering possible behavioral changes, a model retraining
process is considered if the user reports several false alarms
(the number of false alarms can be set by a design choice).
Another approach to consider retraining the model is by observ-
ing the model confidence score for authenticating the legitimate
user [23]. The degradation of the model confidence score (from
the average score of different activities) indicates behavioral
changes that require retraining the model.

User Continuous Authentication: There are two possible
approaches for AUToSen to operate on smartphones: using
a local authentication module or using a client/server design.
Using the client/server design, users can access the authen-
tication service through the server, where the authentication
models are deployed. The data records are collected, cleaned,
preprocessed, and sent to the cloud, where the authentication
model responds with the authentication decision. Note that the
client/server system design is a framework for experimental
settings to examine the validity of our approach in adopting
high-frequency continuous authentication using deep learning.
Even with the requirement of network data communication
between the user’s smartphone and the authentication server,
data transfer was minimal and sufficiently convenient for a
real-time scenario. However, adopting such a design requires
delivering alternatives, e.g., explicit authentication, in case
the service access is interrupted due to malicious activity or
connection and systems failure. Using a local authentication
module that incorporates a trained and continuously updated
authentication model is a preferred choice. The expansion of
storage and computational resources in current smartphones
and the rapid development of machine learning tools allow
the authentication modules to run locally on the device with-
out requiring a connection to the server. Recently, TensorFlow,
an open-source platform for machine learning has launched
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Fig. 3. Accuracy of different LSTM model architectures when we feed the

authentication model with five sensors (ToAcGrMaEl) data sequences col-
lected within a second sampling period. (a) Simple LSTM. (b) Bidirectional
LSTM. (c) Multilayer LSTM.

TensorFlow lite that enables trained deep learning models to
be deployed and run on smartphones for inference. In this
article, we provide an analysis of different sensory data to
train several deep learning architectures for user authentica-
tion on smartphones. We assume a client/server framework for
our experiments and leave the deployment of authentication
models on the user’s smartphone for future work.

IV. EXPERIMENTS AND EVALUATION
A. Effects of Sensors Data

In this experiment, we investigate the effects of including
different sensory data on the performance of authentication
models. The experiment includes the evaluation of the implicit
continuous user authentication task using various LSTM-
based architecture models, namely, simple LSTM-based model
architecture of Fig. 2(a), bidirectional LSTM-based model
architecture of Fig. 2(b), and multilayers LSTM-based model
architecture of Fig. 2(c). All models are trained with sen-
sory data sampled with one second with the 64-Hz sampling
rate, i.e., sequences of 64 readings per second from differ-
ent sensors. The results show the accuracy metrics for the
authentication models of all users included in the experiment.

Five Sensors (ToAcGrMakEl): Using the data set of five
sensors (ToAcGrMakEl), Fig. 3 shows the results obtained by
adopting different models architectures with different LSTM
sizes. All model architectures show high F1-scores, with con-
siderable results improvement when adopting a multilayer
LSTM model. Using simple LSTM, Fig. 3(a) shows an average
Fl-score of 95.58% with the simplest model of simple LSTM
with 16 units. The Fl-score increased to reach 96.59% when
increasing the model size to 128 units. Fig. 3(b) shows the
F1-scores of adopting bidirectional LSTM with different sizes,
ranging from 16 units with an average F1-score of 97.34% to
256 units with average F1-score of 97.23%. Fig. 3(c) shows the
improvement of the authentication performance of multilayer
LSTM models over other architectures since it achieves an
average Fl-score of 96.44% with 16-units models and 97.84%
with 64-units models. These results demonstrate the capabili-
ties of LSTM models in capturing behavioral patterns of users’
usage of smartphones.

Four Sensors (AcGrMaEl): The success of sensory data
modeling with five sensors encourages the investigation of
using data of fewer sensors. Since the touch actions require
calculating the frequencies of actions, we explored working
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Fig. 4. Accuracy of different LSTM model architectures when we feed the
authentication model with four sensors (AcGrMaEl) data sequences collected
within a second sampling period. (a) Simple LSTM. (b) Bidirectional LSTM.
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Fig. 5. Accuracy of different LSTM model architectures when we feed the
authentication model with three sensors (AcGrMa) data sequences collected
within a second sampling period. (a) Simple LSTM. (b) Bidirectional LSTM.
(c) Multilayer LSTM.

with other sensors, namely, accelerometer, gyroscope, mag-
netometer, and elevation. Fig. 4 shows the results achieved
by adopting different model architectures. When using simple
LSTM, Fig. 4(a) shows that a model with 16 units achieves
an average Fl-score of 96.18%, and 97.01% when using 128
units. Adopting bidirectional LSTM architecture improves the
results to achieve an average F1-score of 97.39% with 16-units
models and an average Fl-score of 96.62% for the 128-units
models. Similar results are obtained when adopting multilayer
LSTM models. Fig. 4(c) shows that multilayer LSTM models
with 16-units achieve an average Fl-score of 95.95%. Even
when removing the feature of touch actions, LSTM models
successfully capture the behavioral patterns that enable high
authentication accuracy.

Three Sensors (AcGrMa): Since several previous works,
such as [16], [17], and [37], have shown the success of
modeling users’ activities using readings of three sensors,
namely, accelerometer, gyroscope, and magnetometer, this
experiment uses data collected from only three sensors
(accelerometer, gyroscope, and magnetometer). Fig. 5 shows
the results of adopting different architectures with different
model sizes. Generally, using readings from the three sensors
(AcGrMa) has shown better performance of the authentication
task across all users. One explanation for these improvements
is that the touch actions and elevation readings are more sen-
sitive and event-oriented than other sensors. Fig. 5(a) shows
the results obtained when using simple LSTM models with
different model sizes. Using 16 units as a model size achieves
an average Fl-score of 96.59% and for some users as high as
99.58%. Similar results are obtained when using bidirectional
LSTM models. Fig. 5(b) shows the results of authentication
models using bidirectional LSTM with an average F1-score of
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Fig. 6.  Accuracy of different LSTM model architectures when we feed
the authentication model with two sensors (AcGr) data sequences collected
within a second sampling period. (a) Simple LSTM. (b) Bidirectional LSTM.
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Fig. 7. Accuracy of different LSTM model architectures when we feed
the authentication model with five sensors (ToAcGrMaEl) data sequences
collected within half a second sampling period. (a) Simple LSTM.
(b) Bidirectional LSTM. (c) Multilayer LSTM.

97.49% when using 16 units, and an average of 97.57% when
using 128 units. The results obtained from using multilayer
LSTM models are shown in Fig. 5(c).

Two Sensors (AcGr): Using only two sensors (accelerome-
ter and gyroscope), this experiment evaluates the performance
of the authentication task. Fig. 6 shows the results of using
different architectures to model users’ behavioral patterns for
the purpose of authentication. The results show surprisingly
high Fl-score even when using readings of two sensors, with
a slight degradation in comparison to results from other data
sets. Fig. 6(a) shows an average F1-score of 93.64% with the
simplest LSTM model of 16 units. Bidirectional LSTM mod-
els achieve similar results shown in Fig. 6(b), while the results
obtained by multilayer models are shown in Fig. 6(c).

B. Effects of Data Sampling Period

Continuous authentication requires a high user validation
frequency. In the previous experiments, we show that LSTM-
based models are capable of modeling users’ behavior for
authentication with high accuracy using sensory data col-
lected with a one-second sampling period. In this experiment,
we investigate the effects of using sensory data for a higher
frequency authentication such as 0.5 s. Considering the sen-
sors’ sampling rate at 64 Hz, the size of readings within 0.5 s is
32 readings per sensor. Similar to the previous experiments, we
investigate the effects of using higher authentication frequency,
i.e., shorter data sampling period, on the performance of
different model architectures.

Five Sensors (ToAcGrMakEl): Starting with the Five-Sensor
data set, Fig. 7 shows the Fl-scores achieved by different
LSTM model architectures. Fig. 7(a) shows that the simple
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Fig. 9. Accuracy of different LSTM model architectures when we feed the
authentication model with three sensors (AcGrMa) data sequences collected
within half a second sampling period. (a) Simple LSTM. (b) Bidirectional
LSTM. (c) Multilayer LSTM.

LSTM model achieves 95.65% and 96.52% with 16 and
64 units, respectively. Using bidirectional LSTM models,
Fig. 7(b) shows the achieved F1-scores for the authentication
task with an average of 97.03%, 96.72%, and 96.31% when
using 16, 32, and 64 units, respectively. Similar results are
obtained when using multilayer LSTM models [see Fig. 7(c)].

Four Sensors (AcGrMaEl): With Four-Sensor data set,
Fig. 8 shows a slight improvement in the Fl-scores in com-
parison with the results of the Five-Sensor data set, especially
when using bidirectional LSTM models. Simple LSTM mod-
els are still capable of modeling users’ behavioral patterns with
high Fl-scores across different users, as shown in Fig. 8(a).
Using simple LSTM models achieve an average of 94.72%
for models with 16 units, and 97.21% for models with 32
units. Fig. 8(b) shows an improvement of Fl-scores achieved
by bidirectional LSTM with an average of 97.79% and 97.85%
for 32-units and 128-units models, respectively. Similar results
are reported in Fig. 8(c) for multilayer LSTM.

Three Sensors (AcGrMa): Fig. 9 shows the results obtained
by using the Three-Sensor data set with readings collected
within 0.5-s periods. Similar to results obtained by using the
three sensors (accelerometer, gyroscope, and magnetometer)
when sampling sensors’ reading form one-second period, the
results obtained using higher authentication frequency repre-
sent the best results among other data sets. Fig. 9(a) shows an
average Fl-score of 96.18%, 97.14%, 97.51%, 97.01%, and
96.42% when using simple LSTM with 16, 32, 64, 128, and
256 units, respectively. When using bidirectional LSTM mod-
els, the Fl-scores reported in Fig. 9(b) show an average of
97.31%, 97.70%, 97.32%, 97.06%, and 97.01% when using
simple LSTM with 16, 32, 64, 128, and 256 units, respec-
tively. Similar results are achieved when using multilayer
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Fig. 11. Average Fl-scores of different LSTM architecture when we feed

the models with sequence readings of one second and a half-second period.
The scores are achieved with different data sets (5 Sensors: ToAcGrMaEl, 4
Sensors: AcGrMakEl, 3 Sensors: AcGrMa, 2 Sensors: AcGr).

architectures of the authentication models as shown in Fig. 9(c)
with the best average Fl-score of 97.52% is reported for the
128-units multilayer models.

Two Sensors (AcGr): Using only the accelerometer and
gyroscope readings, Fig. 10 shows a slight degradation in F1-
scores in comparison to those achieved using the Three-Sensor
data set. However, the results show that using only readings
from the accelerometer and the gyroscope are sufficient to
model users’ behavioral patterns even when collected with
high frequency such as within a half-second period. Fig. 10(a)
shows the Fl-scores achieved by using simple LSTM mod-
els with an average Fl-scores ranging from 94% to 96%
across different model sizes. Similar results are reported for
other architectures in Fig. 10(b) and (c) for bidirectional and
multilayer LSTM architecture, respectively.

C. Performance Summary and Discussion

Fig. 11 shows a summary of all model performance under
different configurations. Fig. 11(a) shows the average F1-
scores of different model architectures performing the authen-
tication task using different sensory data sets collected with
a one-second sampling period. While Fig. 11(b) shows the
average F1-scores of different model architectures when using
sensor readings of half a second. Using only three sensors, i.e.,
accelerometer, gyroscope, and magnetometer, is sufficient to
capture users’ behavioral patterns for authentication. The best
results are obtained using the (Three-Sensor data: AcGrMa) in
all configuration and settings. For example, Fig. 11(a) shows

5017

the average F1-score across models of the simple LSTM archi-
tecture with different sizes is 94.62%, 97.10%, 95.08%, and
95.31% for the Two-Sensor data set: AcGr, Three-Sensor data
set: AcGrMa, Four-Sensor data set: AcGrMaEl, and Five-
Sensor data set: ToAcGrMakEl, respectively. The difference in
Fl1-scores when considering fewer sensors is (97.10 — 94.62
= 2.48%) with only two sensors and one-second readings.

We observe that using four or five sensors does not provide
better performance than using three sensors (i.e., accelerom-
eter, gyroscope, and magnetometer). Fig. 11(a) shows a dif-
ference in the average Fl-scores of (97.10 — 95.08 = 2.02%)
and (97.10 — 95.31 = 1.79%) when using the simple LSTM
with data sets of four and five sensors, respectively, against
the performance of using data of three sensors in the AcGrMa
data set. This can be due to several factors, such as using the
elevation readings and touch frequency data makes the input
more sensitive to circumstantial changes in users’ behavioral
patterns when performing different tasks on their smart-
phones, e.g., changing from the Internet surfing to texting
within the sampling period. Using readings from accelerom-
eter, gyroscope, and magnetometer are robust for capturing
distinctive behavioral patterns in a short sampling period, espe-
cially, when there are no constraints on the user activity,
while the additional sensors do not add any significant dis-
criminative features to the authentication modality. Another
observation is that the sampling period does not greatly affect
the performance of the models as the results achieved using
sensors’ data of half a second is comparable to those of one
second, indicating the validity of our approach for active user
authentication with frequency as low as half a second.

Among different LSTM architectures, bidirectional LSTM
achieved the best average results in almost every setting.
Simple Uni-LSTM model achieves similar results to that
achieved by bidirectional LSTM. Multi-LSTM has shown a
slight degradation in Fl-scores due to the fixed time given
to training different models since multi-LSTM architectures
include a larger number of parameters to be optimized during
the training process than the one of simple or bidirectional
LSTM, and thus multilayers models require more training
time. However, the experiments have shown that simple
LSTM and bidirectional LSTM are sufficient to model users’
behavioral patterns for the authentication task.

D. Authentication Analysis

The previous experiments evaluate the performance of
AUToSen using different settings. The results show that using
bidirectional and multilayer LSTM models achieve remark-
able authentication results with different model sizes. In this
experiment, we aim to evaluate the authentication models in
terms of FAR, FRR, and EER. We choose a multilayer LSTM
model with 64 units to be the baseline architecture model as
the best tradeoff between performance and efficiency. Each
user authentication model is trained, in the same manner as
in the previous experiments, to perform the authentication
task using sensory data collected from the model’s legitimate
user and other ten randomly selected users as impostors’ sig-
nals. After the training process, the authentication models are
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TABLE 11
AVERAGE PERCENTAGE OF FAR, FRR, AND EER OF AUTOSen
PERFORMING THE AUTHENTICATION TASK FOR ALL USERS IN THE
COLLECTED DATA SET USING MULTI-LSTM MODEL

Sampling

Dataset FAR FRR EER
frequency
Two-Sensor (AcGr) Is 1.83 43.83 5.02
Three-Sensor (AcGrMa) Is 0.95 6.67 0.41
Four-Sensor (AcGrMaEl) 1s 2.31 7.62 0.72
Five-Sensor (ToAcGrMaEl) 1s 1.72 8.47 0.37
Two-Sensor (AcGr) 0.5s 1.97 4224 385
Three-Sensor (AcGrMa) 0.5s 0.96 8.08 0.09
Four-Sensor (AcGrMaEl) 0.5s 1.65 9.87 0.36
Five-Sensor (toAcGrMaEl) 0.5s 1.53 9.16 0.35
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Fig. 12. ROC curves with multilayers LSTM-based architecture using read-
ings of various data sets and sampling periods. (5 Sensors: ToAcGrMaEl, 4
Sensors: AcGrMakEl, 3 Sensors: AcGrMa, 2 Sensors: AcGr). (a) Sensors data
from one second. (b) Sensors data from half a second.

evaluated using sensory readings from the legitimate users to
calculate the FRR, and sensory readings from the other ten ran-
dom users as impostor signals to calculate the FAR. Table II
shows the average results of the authentication performance of
AUToSen using three evaluation metrics, FAR, FRR, and EER
across all users. Moreover, Fig. 12 shows the ROC curves for
the TPR and FPR across different data sets. The best aver-
age FAR is reported when using the Three-Sensor data set
(AcGrMa) with the one-second sensory data sampling period,
which is a FAR of 0.95%. Achieving this FAR score shows
the resilience of our approach against authenticating impos-
tors, which is the lowest among other works in the literature.
Using a higher authentication frequency of 0.5 s, AUToSen
achieves an average FAR of 0.96% which is only 0.01% differ-
ent from authenticating with one-second frequency. This result
shows that AUToSen is resilient to adversaries even when
users’ behavioral patterns are modeled with 0.5 s readings.
For FRR, AUToSenachieves the best results using the Three-
Sensor data (AcGrMa) with an average of 6.67% when the
sensor data is collected with a sampling period of one second,
and an average of 8.08% when the sampling period is 0.5 s.
The best EER score is also achieved using the Three-Sensor
data set (AcGrMa) with an average of 0.41% and 0.09%
when using the sampling period of one and 0.5 s, respectively.
The authentication performance of AUToSen shows that three
sensors, i.e., accelerometer, gyroscope, and magnetometer,
are sufficient to model users’ behavior for the authentication
tasks. Including the elevation readings and the touch actions
also helps the modeling process; however, such readings may
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introduce more sensitive inputs that influence the authentica-
tion final decision. Moreover, using a sampling period of 0.5 s
enables sufficient information for capturing users’ behavior for
the authentication task since AUToSen achieves the best EER
score of 0.09% using readings from three sensors collected in
0.5 s. However, the FAR and FRR scores in Table II show
that the model performance when using readings of one sec-
ond long is relatively better than when using readings of half
a second. The explanation of this result could be related to
the longer sequences fed to the model at the training phase
that makes the model generates more stable and accurate user
profiles.

Considering the FRR score, AUToSen is expected to deliver
convenient usability for authenticating legitimate users by
increasing the authentication frequency. Using AUToSen with
a one-second sampling period, users are expected to be authen-
ticated with a probability of 99.56% and 99.97% within two
and three seconds, respectively. When using the AUToSen with
half a second sampling period, the usability increases and the
legitimate users are expected to be authenticated with a high
probability such as 99.99% within two seconds. Moreover,
considering the FAR results achieved by the two examined
sampling period, the half a second sampling period shows
outstanding usability and performance.

E. Temporal Behavioral Changes and Model Retraining

Behavioral Changes of Legitimate User: Temporal behav-
ioral changes of the legitimate user may negatively influence
the authentication model performance by increasing the FRR.
Such changes are reported by previous work [23]. One way to
handle temporal behavioral changes is by updating the model
periodically or/and when behavioral changes are observed
through the decline of the model confidence in authenticat-
ing the legitimate user. Observing the temporal behavioral
changes of users, we show that the authentication models
of AUToSen are robust to temporal changes and can operate
with high authentication accuracy if they updated periodically
every three days. Fig. 13 shows the confidence score, i.e.,
the positive authentication probability of authenticating a user
in high frequency, e.g., every one second, during five sep-
arate minutes from three consecutive days. Similar patterns
of behavioral changes were observed in different users’ data.
However, we selected a random user’s readings (from three
sensors) during five random minutes for three consecutive days
to demonstrate the existence of behavioral changes and to
show that a retraining process might be needed after three
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days. Setting a confidence threshold of 0.2, the AUToSen’
model only authenticated the legitimate user three times during
the third day. This demonstrates the robustness of AUToSen
to temporal changes and its smooth user experience when the
models are periodically updated.

Behavioral Changes of Other Users: Proper system design
should consider scenarios where the device is shared among
multiple users. Addressing such scenarios can be by enabling
1) application-specific continuous authentication, where the
continuous authentication is enabled for specific applications;
2) multiuser continuous authentication, where each user is
enrolled and the authentication module should detect the user
and grant access privileges based on specified policies; or
3) simple straightforward switching on and off the module
when sharing the device with trusted others.

F. Robustness Assessments for Adversarial Settings

Designing authentication methods requires establishing
both security and usability assessment. Furthermore, using
machine learning-based techniques for the authentication mod-
ule requires addressing aspects related to adversarial machine
learning, where adversaries may launch attacks by manipulat-
ing the input for the system to force the model to generate
the wrong output, i.e., leading the model to misclassifica-
tion [2], [32]. Such manipulations require minimal changes
to the input data so the resulting adversarial samples are
very similar to the original, therefore posing a serious threat.
Further, the authentication system design, e.g., local module
or client/server design, requires analyzing different levels of
adversary’s knowledge and capabilities to launch either white-
box or black-box attacks. We leave addressing the robustness
of models against such adversarial settings for future work.

V. CONCLUSION

Smartphone becomes crucial for our daily life activities and
increasingly loaded with our personal information to perform
several sensitive tasks including mobile banking, communi-
cation, and storing private photos and files. Therefore, there
is a high demand for applying secure and usable authentica-
tion technique that prevents unauthorized access to sensitive
information. This article proposes AUToSen, an active authen-
tication approach for smartphone users using sensors data. Our
approach exploits LSTM to model users’ behavioral patterns
using readings of smartphones’ sensors. AUToSen is simple
and efficient in handling and processing sensors’ data in a
real-time manner that enables validating users without the
requirement to interact with their phones. We conducted com-
prehensive experiments to evaluate AUToSen on a real data
set collected with our data-collection application from 84 par-
ticipants. We show the AUToSen is capable of authenticating
users with high Fl-score using readings from different sen-
sors. However, using the three sensors, namely, accelerometer,
gyroscope, and magnetometer, shows the best impact of the
authentication performance. Moreover, we show that AUToSen
is capable of processing and modeling users’ behavior in real
time and with high frequency as 0.5 s since the authentica-
tion performance indicates the sufficiency of sensors readings
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within 0.5 s to model users’ behavior for authentication pur-
poses. AUToSen shows new state-of-the-art results for active
authentication for smartphones using sensors data in terms of
FAR, FRR, and EER.
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