
Soteria: Detecting Adversarial Examples in

Control Flow Graph-based Malware Classifiers

Hisham Alasmary†‡�, Ahmed Abusnaina†�, Rhongho Jang†�,

Mohammed Abuhamad†, Afsah Anwar†, DaeHun Nyang¶, and David Mohaisen†

†University of Central Florida ‡King Khalid University ¶Ewha Womans University

hisham, ahmed.abusnaina, r.h.jang, abuhamad, afsahanwar @knights.ucf.edu; nyang@ewha.ac.kr; mohaisen@ucf.edu

Abstract—Deep learning algorithms have been widely used
for security applications, including malware detection and clas-
sification. Recent results have shown that those algorithms are
vulnerable to adversarial examples, whereby a small perturbation
in the input sample may result in misclassification. In this paper,
we systematically tackle the problem of adversarial examples
detection in the control flow graph (CFG) based classifiers for
malware detection using Soteria. Unique to Soteria, we use
both density-based and level-based labels for CFG labeling to
yield a consistent representation, a random walk-based traversal
approach for feature extraction, and n-gram based module
for feature representation. End-to-end, Soteria’s representation
ensures a simple yet powerful randomization property of the used
classification features, making it difficult even for a powerful
adversary to launch a successful attack. Soteria also employs
a deep learning approach, consisting of an auto-encoder for
detecting adversarial examples, and a CNN architecture for
detecting and classifying malware samples. We evaluate the
performance of Soteria, using a large dataset consisting of 16,814
IoT samples, and demonstrate its superiority in comparison
with state-of-the-art approaches. In particular, Soteria yields an
accuracy rate of 97.79% for detecting AEs, and 99.91% overall
accuracy for classification malware families.

Index Terms—Internet of Things; Adversarial Machine Learn-
ing; Malware Detection; Deep Learning

I. INTRODUCTION

The rising acceptance of IoT devices for different industrial

and personal applications has been paralleled with a propor-

tionally increase to their susceptibility to attacks. A major

reason for their susceptibility to take is their use of vulner-

able or insecure functions and services. As such, adversaries

exploit these vulnerable services to deliver malware and to

launch orchestrated attacks. This makes malware detection an

important issue. To address this issue, several prior works have

leveraged different machine- and deep-learning algorithms for

malware detection atop program analysis [1], [2], [3], [4],

[5], [6]. Program analysis approaches utilized for malware

include both static and dynamic analyses. Dynamic analysis

require executing malware for obtaining behavior features

that are fed into machine learning algorithms for detection.

Although the dynamic features are comprehensive, dynamic

analysis techniques are subject to various shortcomings, and

most importantly their complexity and time consumption,

�The first three authors contributed equally to this work. ‡ This work was
done while the author was at the University of Central Florida.

resulting in poor scalability. Static analysis, on the other hand,

does not require running programs, but relies on programs

contents, obtained from the static binary. A popular static

analysis technique is using Control Flow Graph (CFG) to

build a representative feature modality for malware detec-

tion, and is shown to be effective in various studies [7],

[8]. Machine learning algorithms are typically implemented

atop of the features extracted from the static (and dynamic)

analysis techniques. However, these algorithms are susceptible

to adversarial attacks, thereby circumventing such detection

systems [9]. Therefore, it is essential to detect such attacks.

To this end, this work proposes Soteria, a system to defeat

the adversarial example attacks on CFG based classifiers for

malware detection.

Given that ML models’ output depends on the input pat-

terns, ML models can be prone to targeted attacks on their

inputs. Particularly, an adversary may fool the models by

applying perturbations to the input to generate adversarial

examples (AEs) that have similar characteristics with the

original sample. As such, recent works have examined the

robustness of the machine learning models in general, and

have demonstrated the generation of AEs using methods such

as the fast gradient sign method [10], generative adversarial

networks [11], the DeepFool method [12], and the graph-based

adversarial learning [9], among others. Nevertheless, there

have been several attempts to defend against the adversarial

attacks on the machine learning models by including the

adversarial examples in the training process [13]. Although

prior works have shown the inefficiency of the malware

detection models when subjected to adversarial examples, to

the best of our knowledge, there is no work on defending such

models from adversarial attacks. Identifying the research gap,

with this work, we inch closer towards bridging the gap.

Adversarial attacks on malware detectors have recently been

conducted by Abusnaina et al. [9], Kolosnjaji et al. [14],

and Kreuk et al. [15]. While Abusnaina et al. [9] show the

susceptibility of the CFG-based detectors, the other works

append bytes to the binary file. Both of these methods change

the files while preserving the practicality and functionality

of the clean IoT malware. Additionally, the AE creation

of malware is limited due to the risk of un-executability.

Acknowledging the importance of having effective defense

to detect adversarial examples, Soteria utilizes features from

888

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00089

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
08

9

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

the CFG to detect them. Particularly, Soteria consists of two

major components, the AEs detector and the IoT malware

classifier. Soteria starts by labeling the CFG nodes based

on two approaches: density-based labeling and level-based

labeling. Then, Soteria applies a set of random walks, with

a length proportional to the number of nodes in the CFG, on

every labeling approach to deeply express and represent the

behaviors of the software processes manifested in the CFG.

The nodes making up the random walks are then used as the

features for the operation of Soteria. In the first phase, the

detection system that uses the deep features from the CFG to

detect the AEs, thereby stopping their access to the malware

classifier with an accuracy of 97.79%. In the next phase, with

a flexibility to re-use the feature-set from the detection phase,

it classifies the input file as benign or assigns an appropriate

family label to the malware with an accuracy of 99.91%.

Contributions. In this paper, we make two contributions:

1 Motivated by the recent body of work on developing

adversarial examples on machine learning-based malware de-

tection algorithms, we propose the design and implementation

of Soteria, a system for detecting IoT malware. Similar to

other efforts in this space, Soteria utilizes Control Flow Graph

(CFG) based feature representations. Unique to Soteria, we use

both density-based and level-based labels for CFG labeling, a

random walk-based traversal approach for feature extraction,

and n-gram based module for feature representation. End-to-

end, Soteria’s representation ensures a simple yet powerful

randomization property of the used classification features,

making it difficult even for a powerful adversary to launch

a successful attack. Soteria also employs a deep learning

approach, consisting of an auto-encoder for detecting AEs, and

eliminating them from the classification process, and a CNN

architecture for detecting and classifying malware samples.

2 We evaluate the performance of Soteria, using a large

dataset consisting of 16,814 IoT samples, and demonstrate its

superiority in comparison with state-of-the-art approaches. So-

teria yields an accuracy rate of 97.79% for detecting AEs, and

99.91% overall accuracy for classification malware families.

Organization. The rest of this paper is organized as follows.

We introduce our motivation in section II, including practical

adversarial example manipulation, limitation of adversarial

learning, Graph Embedding, and Augmentation approach, and

the threat model. We describe the system design in section III.

We analyze and evaluate Soteria in section IV and discuss the

results in section V. We review the literature in section VI,

and conclude our study in section VII.

II. BACKGROUND AND MOTIVATION

Adversarial examples (AEs) can be generated by slightly

manipulating a sample to fool the classifier, and done in

the context of malware on either the binary or the code

level. 1 Binary-level AEs the generation of such AEs entails

manipulating the bytes of the malware sample upon com-

pilation, without any regard to the function and purpose of

such bytes, as has been done in several works [16], [17],

[18]. Another method for binary-level AEs generation would

entail injecting a benign block of bytes into an unreachable

part of the malware binary, e.g., by adding a new section or

appending the benign bytes to the end of malicious code, thus

altering the feature representation introduced by the AE. 2

Code-level AEs the generation of those AEs entails applying

perturbation over the original code by either modifying the

structure of the code or inserting an external code into it.

For instance, augmenting or splitting functions results in a

structure modification, thus altering the resulting feature space

representation of the sample (e.g., CFG-based).

A. Practical Adversarial Examples

For adversarial attacks against machine learning-based mal-

ware detection models to be practical, adversaries must ensure

the AEs resulting from the manipulation of a malware sample

should still be executable (undamaged), making many of

the algorithms proposed in the literature for AEs generation

impractical for the malware detection domain. To this end,

AEs can be categorized into impractical and practical AEs.

Impractical Adversarial Example. An AE is impractical if

the injected code is compiled as an unused function during

the compilation process. In the binary level, a sample that

manipulated by any form of byte injection (e.g., adding a new

section or appending at the end of file) is not considered as

the practical adversarial example.

Practical Adversarial Example. A practical AE is a mixture

of the benign and/or malicious functions where the manipu-

lated components are reachable (part of the code flow) and

executable (do not damage the code).

Both code- and binary-level approaches can be used for

generating practical AEs, although binary-level approaches

are difficult to apply for fine-grained perturbations. A recent

study [9] showed that adding external code to the original one

leads to a high misclassification rate of the model’s outputs

while preserving the functionality of the original code. Such

behavior can be critical as it results in changing the source

code, execution flow, signature, and binaries, which reduces

the performance of state-of-the-art classifiers. In this study,

we focus on the injection of external code as a capability

for creating AEs, since such an approach affects various

representations of the original samples (See section II-D).

B. Limitation of Adversarial Learning

Adversarial training is a defense to increase the learning

model’s robustness by training over clean and adversarial

datasets. Per Table I, this technique is used for enhancing the

robustness of image classifiers by perturbing the training data.

Drawbacks. A large number of studies on adversarial learning

were implemented to generate AEs by perturbing the feature

space, typically an image. Training a model over AEs gener-

ated by one method may not increase its robustness against

other methods. This highlights the problem of adversarial

learning, training against a set of methods does not guarantee

the robustness against different attacks. This problem becomes

critical with the existence of code-level manipulation. Where

an adversary can change the outcome of the attack by changing

889

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Current adversarial attacks defenses. The focus of

the adversarial attacks defenses is on adversarial examples in

the context of image classification. Note: MLP is Multilayer

Perceptron, DNN is Deep Neural Network, and RNN is

Recurrent Neural Network.

Paper Model Dataset Application

Goodfellow et al. [19] MLP 130,000+ Image

Xu et al. [20] DNN 6,000 Image

Meng et al. [21] DNN 121,000 Image

Liao et al. [22] DNN 280,000 Image

Dhillon et al. [23] DNN 60,000 Image

Papernot et al. [24] DNN 130,000 Image

Samangouei et al. [25] DNN 70,000 Image

Miyato et al. [26] RNN 805,753 Text

0x0000871c

0x0000887c

0x0000876c

0x000087d4

0x000087b4 0x000087dc

0x00008824

0x00008844

0x00008860

0x00008874

0x0000886c

(a) Original graph

0x08000040

0x08000084

0x08000050

0x08000058

0x08000068

0x08000070

0x08000074

0x08000090 0x08000080

0x0800008c

(b) Targeted graph

0x0000871c

0x0000887c

0x0000876c

0x000087d4

0x000087b4 0x000087dc

0x00008824

0x00008844

0x00008860

0x00008874

0x0000886c

0x00008898

0x000088dc

0x000088a8

0x000088b0

0x000088c0

0x000088c8

0x000088cc

0x000088e8 0x000088d8

0x080088e4

0x0000870c

0x000088f8

(c) GEA generated graph

Fig. 1: GEA adversarial approach. The CFG in Fig. 1(c) is

obtained by embedding the CFG of a selected sample in

Fig. 1(b) into the CFG of the original sample in Fig. 1(a).

It can be done by injecting code directly.

the embedded code, or slightly changing the attack method et

al. [9]; e.g., an adversary can decide which portion of the

code he wants to execute. Therefore, adversarial benign and

malicious samples can co-exist within the same feature space,

calling for methods to detect AEs, by only relying on the

structure of the clean sample.

Features

AE

Adversarial Example Detector

AE?

Yes

No Features

Non-AE

File

Feature
Extractor

Classifier
Adversarial Example

Benign

Mirai
Tsunami

Gafgyt

Fig. 2: Architecture of Soteria. IoT samples are fed to the fea-

ture extraction process, where each sample is represented by

multiple feature vectors. The feature vectors are forwarded to

adversarial example detector. All non-AEs are then forwarded

to the classifier to be classified into its corresponding family.

Fig. 3: Soteria feature extraction process. IoT samples binaries

are disassembled to extract their corresponding CFGs. Then,

two nodes labeling techniques are used (Dense-based and

level-based), then, several random walks are done over each

labeled graph. The trace of the random walk is then used for

feature extraction by using n-grams with TF-IDF.

C. Graph Embedding and Augmentation

Graph Embedding and Augmentation (GEA) is an ap-

proach [9] that is shown to produce AEs that are executable,

while allowing targeted adversarial attacks, addressing limita-

tions of the literature. GEA inserts benign code into a target

malware sample to generate an AE, with different feature

representations. GEA applies direct modifications to the CFG

of the sample, affecting the extracted features and resulting in

a misclassification, both targeted and non-targeted.

Generating AEs with GEA. The process of generating ad-

versarial examples is done by merging the code of the original

sample with the code of a targeted sample. The targeted

sample belongs to the class which the adversary desires to

misclassify to. Fig. 1 shows the generated CFGs of each

sample. Fig. 1(a) is the generated CFG of the original sample

code, whereas, Fig. 1(b) represents the CFG of the embedded

code. Combining the original and external code results in

Fig. 1(c). The combination is done by creating a shared entry

and exit blocks, where only one branch is executed. In this

case, the left branch that belongs to the original sample will be

executed. Note that changing in the structure of the code will

change the extracted features, resulting in misclassification.

D. Threat Model

The adversary’s goal is to fool the classifier by misclas-

sifying malicious samples as benign and vice versa, while

preserving the functionality and practicality of the original

sample. Our threat model focuses on AEs generated based

on code-level manipulation using GEA (in section II-C).

We assume that the adversary has full access to the source

code of benign and malicious samples. Moreover, the adver-

sary can edit, compile, and merge samples, and knows the

model’s design and its internal architecture. The adversary’s

890

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

goal is to conduct targeted and non-targeted misclassification.

The objective of Soteria is to provide a robust and accurate

classification in the presence of this model.

III. SYSTEM DESIGN

A. High-Level Architecture

To address the impracticability of modification-based adver-

sarial examples, we propose Soteria, a malware classification

framework that incorporates two modules: adversarial sample

detection and malware classification. Soteria manifests the

following advantage. It eliminates the cost of extracting new

features, meaning that it can re-use the features generated

during the detection of the AEs to classify a sample as benign

or malicious. Alternatively, the user has the flexibility over

the choice of classifier, meaning that the user can make use of

different set of features, classifier parameters, or another clas-

sifier altogether. Figure 2 represents the high-level architecture

of Soteria, comprising of three major components, feature

extractor, AEs detector, and malware classifier.

Feature Extractor. Soteria utilizes the features from the

graphical representation of a program’s flow execution, i.e.,

CFG. For a graph G, such that, G = (V,E), and nodes (V)

and edges (E) represent the basic blocks and the traversed

paths, respectively. A critical advantage of the CFG is that

it summarizes the control flow by connecting the entry block

with reachable blocks directly or indirectly. Particularly, if a

block of code is appended to an existing program, with an

intention to fool the classifiers, knowing that the appended

blocks are unreachable, our feature extraction methodology

ignores such blocks, in contrast to binary- and image-base

classifiers. The features driven from the CFG ignore the non-

executable part of samples, eliminating the effect from noise

injection and unused functions in the sample.

AEs Detector. The detector is a standalone component used

prior to the classification process to filter out practical AEs.

In this way, we eliminate the model’s vulnerability to AEs by

forwarding only legitimate samples (i.e., benign or malicious)

to the classifier that was trained using a non-adversarial

dataset. Unlike the commonly used approaches in the litera-

ture, the detector is trained using only non-adversarial dataset,

while maintaining a distinguishable feature representation that

enables detecting potential AEs.

Classifier. Soteria requires a classifier that can accurately clas-

sify the samples into malicious and benign with the resistance

towards the impractical AEs. For evaluation, we make use of

an ensemble of CNN classifiers, however, it can be replaced

with another desired method.

B. Adversarial Examples Detector

The purpose of the detector is to distinguish normal samples

from adversarial ones, regardless of whether the sample is

malicious or not. Fig. 3 shows the flow of the feature extrac-

tion, including sample pre-processing with CFG extraction and

labeling, followed by feature extraction using n-gram of the

obtained random walks on the labeled CFG.

10

9

6

1

8 2

7

0

5

3

4

(a) Density-based label

9

11

20

4

19 7

17

0

14

5

15

21

1

13

3

8

18

2

6 16

12

22

10

(b) Density-based label

0

2

1

3

5 4

6

7

9

10

8

(c) Level-based label

1

4

5

6

12 11

16

17

20

22

21

2

3

8

9

14

19

13

10 18

7

0

15

(d) Level-based label

Fig. 4: Graph labeling using two approaches, density- and

level-based. Each node has a label in [0, |V |−1], where |V | is

the number of nodes in G. Fig. 4(b) and Fig. 4(d) show the

labeling of the GEA generated CFG over the original graphs

in Fig. 4(a) and Fig. 4(c), respectively.

1) Sample Pre-processing: The pre-processing phase is

concerned with nodes labeling. For a graph G = (V,E), we

use two labeling approaches: density-based and level-based.

I Density-based Labeling (DBL). The density of a node

is defined as the summation of in- and out-edges over the total

number of edges in the graph. DBL sorts all nodes according to

their density, where the most dense node is labeled as 0 and the

least dense node is labeled as |V |−1, and the centrality factor

of a node is used to rank nodes with tied density CFvi

1. If two

or more nodes still have the same centrality factor, we assign

labels based on their levels, considering the main or entry

block function as the entry node. We notice some cases where

two nodes with equal values are at the same level (symmetric

nodes), and label them in ascending order since switching their

labels will not affect the consistency of labeling. Fig. 4(a)

shows the result of the density-based labeling. As shown, node

0 and 1 are the most dense nodes because they are connected

to four blocks, and node 0 has a higher centrality factor value.

The labeling ends by assigning label 10 to the entry block as

1Centrality factor of a node is the sum of node’s betweenness and closeness
centrality values, CFvi = Bvi + Cvi . The betweenness centrality (Bvi) of
a node vi is defined as Δ(vi)/Δ(m), where Δ(vi) is the count of shortest
paths travel through vi and connecting nodes vj and vt, for all j and t where
i �= j �= t, and Δ(m) is the total number of shortest paths between such
nodes. The closeness centrality (Cvi) of a node is defined as the average
shortest path between node vi and all other nodes in the graph G.

891

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

the least dense node with the lowest centrality factor.

II Level-based Labeling (LBL). The level of a node vi is

defined by the smallest number of steps Svi
from the entry

node to reach vi, where the level of a node is equal to 1 +
Svi

. In LBL, we consider the main or entry block function

in the CFG as the first level layer, and follow (in breadth-first

search manner) other levels for labeling them. For nodes at the

same level, we follow the same labeling mechanism in DBL.

Fig. 4(c) shows an example for the result of LBL, where the

entry block is assigned with label 0. In the second level, there

are two nodes with the same density values, and the centrality

factor values are used. The process ends by labeling the last

level nodes. Note that the entry block will always have the

label 0 when using the LBL method.

Both density- and level-based labeling follow the strict

predefined rules to guarantee consistency of representation

and ensures that any modification applied to the graph will

be reflected in the labels’ assignment. Fig. 4(b) and Fig. 4(d)

show the labeling of the generated graphs using GEA. It is

worth noting that the labels’ assignment varies for each graph,

even when they share a sub-graph. Labels’ assignment over

GEA results in changing the labels, and the feature extraction

process, hence affecting the detector’s behavior.

2) Feature Representation: For feature generation and rep-

resentation, we apply a random walk and use a method based

on the n-gram model to approximate the graph.

� Random Walk: A random walk describes random steps

in the graph space, and is used to estimate the graph state

space. Let G be an undirected graph with a marker placed at

vi, initially the entry block. At each step, the marker moves to

an adjacent vertex vj with probability 1
deg(vi)

, where deg(vi)
is the degree of vi. The marker keeps track of the visited

vertices’ labels as it moves, e.g., random walk over the original

sample graph in Fig. 4 may generate W = “10 9 2 1 2 . . . ”
when using DBL and W ′ = “0 2 4 3 4 . . . ” when using

LBL. We define the length of the random walk as |W |
(the number of labeled nodes collected by a random walk

of length |W | is (|W |+1). In Soteria, W = 5 × |V |, and

repeat the walk ten times over DBL and ten times over LBL,

resulting in 20 vectors. The use of random walk helps to

randomize the feature extraction process, making it difficult

to generate practical AEs. We observed that the repetition of

the process improves the quality of the random walks’ feature

representation, corresponding to the underlying graph.

� n-grams: The n-gram technique can be used in different

models for feature representation of text, documents, graphs,

etc. Unique terms or n-gram are extracted from the entire

corpus before counting the frequencies in individual samples.

Inspired by node2vec [27], we use n-gram representation

of the graphs from the sequences of nodes obtained by the

random walk. From the derived random walks with the lengths

specified above, we extract n-grams of lengths 2, 3, and 4 as

a feature representation of the CFG. Given that, the number of

n-grams is large even for small graphs. We select and use the

top 500 discriminative features for each LBL and DBL (thus,

1,000 features in total). The selection of the top discriminative

Fig. 5: The proposed AEs detector: The detector consists of

five fully connected layers auto-encoder. The input to the auto-

encoder is density- and level-based feature vectors, where

the output is the reconstructed feature vectors. A validation

unit is used to calculate the reconstruction error. A sample is

considered as AE if reconstruction error exceeds a threshold.

feature is based on the frequency of W .

3) Building Detection Model: The core of the detection

model is an auto-encoder that consists of five fully connected

dense layers (as shown in Fig. 5). The auto-encoder recon-

structs the given input at the output layer, and consists of four

main blocks; an input layer, an output layer, hidden layers,

and a validation unit, which are described in the following.

• Input Layer. This layer is a one-dimensional vector of size

1×1000 fed by the density- and level-based features vectors.

• Hidden Layers. These layers consist of three fully con-

nected dense layers, and extract a deep representation of the

features. The design is based on decoding the features from

1×1000 to 1×2000 and 1×3000. Afterward, a third layer

encodes the features presentation to 1×2000. This structure

eliminates the features dependencies in the reconstruction

process, as the extracted features are mutually independent.

• Output Layer. This layer is fully connected to the third

hidden layer. With a shape of 1 × 1000, the output layer

reconstructs the features seen at the input as its output,

which is then returned as a density- and level-based vector.

• Validation Unit. The validation unit computes the recon-

struction error (RE) by calculating the Root Mean Square

Error (RMSE) between the original input x and the recon-

structed output x̂. If the RMSE exceeds the threshold, set

to be 50%, the sample x is labeled as AE.

C. Classifier

As the detector distinguishes between adversarial and clean

samples, the classifier distinguishes clean samples into be-

nign or one of three malicious families: Gafgyt, Mirai, and

Tsunami. For this purpose, two CNN classifiers are utilized to

incorporates separately the density- and level-based features.

1) CNN Classifiers: The input to the classifier in Soteria

is a one dimensional (1D) vector of size 1× 500 representing

the density- or level-based extracted features. Fig. 7 shows

the structure of the classifier, which consists of three blocks:

convolutional blocks (ConvB) 1 and 2 and a classification

block (CB). All layers use the Rectified Linear Units (ReLU)

892

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Soteria classification process. The CNN-based models’

inputs are the dense- and level-based feature vectors. The clas-

sification decision is the majority vote of the CNN classifiers

output probabilities over the feature vectors.

Fig. 7: The structure of Soteria classifiers. The classifiers

consist of four convolutional layers with max-pooling and

dropout functions. The output of the classifier is the softmax

probability of each class.

activation function, and dropout regularization to prevent

model over-fitting. We describe the CNN structure in the

following using the notation p as the dropout probability, s

as the stride, m as the max-pooling size.

• ConvB1. ConvB1’s input is the extracted features, and

consists of two consecutive convolutional layers with 46

filters of size 1 × 3, that operate convolutions with s = 1
with no padding to generate feature maps of size 46× 498.

Each convolutional layer is followed by a max-pooling with

s = m = 2 and a dropout with p = 0.25.

• ConvB2. Similar to ConvB1, except for the number of

filters. ConvB2 consists of two convolutional layers with 92

filters of size 1× 3, followed by max-pooling and dropout.

• CB. CB’s input is the flattened feature maps of ConvB2,

fed to a fully connected layer of size 512 with a dropout

p = 0.5. The output of the fully connected layer is fed to a

softmax layer for the classification.

2) Majority Voting: For each sample, we perform ten

random walks and generate 20 feature vectors (from both

DBL and LBL). These feature vectors are forwarded to their

corresponding CNN classifiers. The final output is based on

the majority voting unit, where the class with the highest vote

is used as the sample’s label (see Fig. 6).

IV. DATASET AND EVALUATION

A. Dataset

To evaluate Soteria, we assembled a dataset of IoT benign

samples and IoT malware. We collected 13,798 malware

samples, randomly selected from CyberIOCs [28] during the

period of January 2018 to late February of 2019. For the

TABLE II: Distribution of IoT samples across the benign and

malicious families. Gafgyt is the most popular IoT family with

66.18% of the dataset samples, while Tsunami is the least

popular with only 262 samples (1.55% of the samples). The

dataset is split into the train (80%) and test (20%) subsets.

Class
of Samples

% of Samples
Train # Test # Total

Benign 2,416 600 3,016 17.94%

Gafgyt 8,911 2,217 11,128 66.18%

Mirai 1,935 473 2,408 14.33%

Tsunami 210 52 262 1.55%

Overall 13,472 3,342 16,814 100%

benign samples, we manually assembled a dataset of 3,016

samples from source-code projects available on GitHub [29].

Next, we used radare2 [30] to obtain the CFGs of the samples.

Throughout the study, wherever required, we use 80% our

dataset for training and validation, and 20% for evaluation.

Malware Family (Class). To determine the family label

of the malware, we inspect the malware samples through

VirusTotal [31]. The scan results from the VirusTotal are then

passed through AVClass [32] to label them with their family

class. VirusTotal scans include scan results from multiple anti-

virus software, each of which assign a family name to the

malware. AVClass further uses majority vote to determine

the family label. Soteria classifies the samples into different

classes, i.e., family labels and benign. Table II shows the IoT

samples’ distribution across classes.

Adversarial Dataset. Recall that we utilize the GEA to the

generate the AEs to evaluate Soteria’s robustness. These AEs

are generated from the test dataset (20% of the samples per

class). Towards this, we start by selecting three samples from

each class, i.e., one from each sizes, small, medium, and large.

We define small, medium, and large by minimum, median, and

maximum number of nodes in the dataset. Taking a sample

from a class for each size, as the targeted sample, we generated

adversarial examples by applying GEA over every sample in

the test dataset of all the classes except for the targeted sample

class. For example, if we select a sample of size Small from

the benign dataset, we then apply GEA over this sample and

each of the samples in the test dataset of Gafgyt, Mirai, and

Tsunami, giving us a total of 2,742 AEs (it can be seen in

Table II that Gafgyt, Mirai, and Tsunami have 2,217, 473,

and 52 samples, respectively, aggregating to 2,742 AEs). The

number of generated AEs of each class is in Table III.

B. Feature Analysis

We extract features from 200 random samples from each

class. Recall that we extract density- and level-based features

from each sample. We use both of these feature vectors

together to create a combined feature vector of size 1× 1000.

We used Principal Component Analysis (PCA) [33] with a

dimension of two. PCA converts a set of observations of

possibly correlated variables into a set of values of linearly

893

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

TABLE III: GEA selected targeted samples. These samples are

used to generate the AEs to evaluate Soteria. Three samples

from each class are selected of different sizes (number of

nodes), i.e., small, medium, and large.

Class Size # Nodes # AEs

Benign

Small 10 2742

Medium 50 2742

Large 443 2742

Gafgyt

Small 13 1125

Medium 64 1125

Large 133 1125

Mirai

Small 12 2869

Medium 48 2869

Large 235 2869

Tsunami

Small 15 3290

Medium 46 3290

Large 79 3290

Fig. 8: The PCA comparison between the benign and malware

families using features used in Alasmary et al. [3].

uncorrelated variables called principal components.

Baseline Comparison. Prior works, like, Alasmary et al. [3]

and Abusnaina et al. [9] use graph theoretic features extracted

from the general structure of the CFG. With the comparative

analysis of such features with our feature considerations, we

exhibit our feature sets to be more discriminative. Fig. 8, and

Figures 9(a), 10(a), and 11(a) show the PCA visualization of

the feature vectors between the classes of features considered

in the prior works and our features design, respectively. Notice

that our feature representation is more discriminative of the

classes. Additionally, we notice that the malicious classes

in the figures are indistinguishable using the graph theoretic

features. Table IV shows the distribution of the discriminative

features over the four classes with 51 and 129 density-based

and level-based features, respectively, shared between classes.

AE vs. Clean Features. To detect AEs, i.e., distinguish the

AEs from the clean samples, understanding the differences in

feature representation between clean and AEs is important. To

examine this, we applied PCA on the clean and adversarial fea-

ture vectors, the results of which are shown in Fig. 9(b), 10(b),

and 11(b). Notice that the clean and AEs are distinguishable,

(a) Benign and malware (b) Normal and adversarial

Fig. 9: Soteria: Dense-based labeling feature vector com-

parison. Fig. 9(a) shows the PCA distribution of benign

and malware samples. Fig. 9(b) shows the PCA distribution

comparison between the normal and GEA generated AEs.

(a) Benign and malware (b) Normal and adversarial

Fig. 10: Soteria: Level-base labeling feature vector compar-

ison. Fig. 10(a) shows the PCA distribution of benign and

malware samples. Fig. 10(b) shows the PCA distribution

comparison between the normal and GEA generated AEs.

particularly when using the combined feature vectors.

C. Evaluation and Analysis

Recall that Soteria has two major functionality, AE detec-

tion and classification. Below, we present the evaluation of

Soteria’s performance and also compare it with the baseline.

1) Adversarial Example Detector: We evaluated AE detec-

tor of Soteria by its ability to detect adversarial examples and

distinguish them from the clean samples, regardless of their

class. Fig. 9(b), 10(b), and 11(b) show the spatial differences

between clean and adversarial samples.

Training Parameters. We trained Soteria on reconstructing

the training data in Table II. The reconstruction error (RE) is

the RMSE between the original and reconstructed samples, we

set the number of epochs to 100 with a batch size of 128.

Testing. Given the trade-off between adversarial detection

sensitivity (false negatives) and the clean samples misdetection

(false positive), setting a proper RE threshold is essential.

We calculate the RE and set the threshold (Th) as Th =
μ(�RE) + σ(�RE), where �RE is a vector of all RE values of

the training samples, and μ and σ are the mean and standard

894

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

(a) Benign and malware (b) Normal and adversarial

Fig. 11: Soteria: Combined labeling feature vector comparison.

Fig. 11(a) shows the PCA distribution of benign and malware

samples. Fig. 11(b) shows the PCA distribution comparison

between the normal and GEA generated AEs.

TABLE IV: Distribution of dense- and level-based feature

vectors extracted by n − grams technique from the random

walk traces among the IoT benign and malware classes.

Class
Features % Features

Dense Levels Total Dense Levels Total

Benign 153 290 443 30.6% 58.0% 44.3%

Gafgyt 445 450 895 89.0% 90.0% 89.5%

Mirai 162 251 413 32.4% 50.2% 41.3%

Tsunami 114 240 354 22.8% 48.0% 35.4%

Shared 51 129 180 10.2% 25.8% 18.0%

deviation of the training samples RE, respectively. Fig. 12

shows the RE distribution over the clean and adversarial

features vectors. To consider a sample as adversarial, half of

its feature vectors should have a RE higher than the threshold.

Performance. Table V shows Soteria’s performance against

AEs. Overall, the detector detects 97.79% of the AEs. In most

cases (9 out of 12), the detector was able to detect AEs with

an accuracy greater than 99%. Furthermore, Table VI shows

the detection performance against clean samples. Notice that

only samples from Gafgyt family were misdetected as AEs,

mainly because of the high number of discriminative features

associated with this family, as shown in Table IV. In conclu-

sion, we detected AEs and distinguish them from the clean

samples with high accuracy. Detected samples are labeled as

adversarial and will not be forwarded to the classifier.

Analysis. To show the importance of setting the right thresh-

old, we re-implement the threshold as Th = Mean(�RE) +
α × SDV (�RE), where α is an arbitrary value. We test the

detector performance against the clean and adversarial samples

by varying α from 0 to 2.0. Fig. 13 shows the effect of α on the

detection error. With α = 0, all AEs were detected, although

more than 60% of the clean samples were classified as AEs.

With α = 2.0, all clean samples were correctly detected and no

AEs were detected by Soteria. Note that our selected threshold

was chosen without access to the test dataset.

2) Classifier: The classifier aims to correctly distinguish

a sample into the aforementioned classes (Benign, Mirai,

Gafgyt, or Tsunami). We evaluate the performance of Soteria

(a) RE: Distribution (b) RE: AUC

Fig. 12: Reconstruction Error (RE) comparison between nor-

mal and the generated AEs. Fig. 12(a) shows the distribu-

tion frequency of the RE among the normal and adversarial

samples. Fig. 12(b) represents the accumulated frequencies of

samples and their corresponding RE. The vertical dashed line

is the chosen threshold for Soteria AEs detector.

TABLE V: GEA: Detector Performance over adversarial sam-

ples. The detector was able to detect an overall percentage of

97.79% of the AEs. DE refers to the detected samples.

Class Size # AE # DE % DE

Benign

Small 2,742 2,741 99.96%

Medium 2,742 2,739 99.89%

Large 2,742 2,340 85.34%

Gafgyt

Small 1,125 1,115 99.11%

Medium 1,125 1,125 100%

Large 1,125 1,120 99.55%

Mirai

Small 2,869 2,865 99.86%

Medium 2,869 2,864 99.82%

Large 2,869 2,680 93.67%

Tsunami

Small 3,290 3,289 99.97%

Medium 3,290 3,287 99.91%

Large 3,290 3,248 98.72%

Overall 30,078 29,413 97.79%

alongside the existing approaches.

Training Parameters. We set the number of epochs to 100

with a batch size of 128 and evaluated the performance of

each model individually and against the majority voting.

Performance. We evaluated Soteria’s classifier’s performance

against two existing models: 1) Graph-based: Alasmary et

al. [3] propose a malware detector based on features extracted

from the general structure of the CFG. , and 2) Image-based:

Cui et al. [5] use image-based design where each sample is

represented as an image of a fixed size to detect malware.

We implemented the above two systems. Table VII shows the

performance of the models for the different classes. The model

accuracy over each class is measured by the number of samples

correctly classified over the total number of samples that

belong to that class. For image-based model, we implemented

the four models mentioned in their design. The evaluation of

96×96 and 192×192 based models shows poor performance,

with an overall accuracy rate of 66.37%. Therefore, we did not

895

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: GEA: Detector Performance over clean samples.

Only 6.16% of the clean samples were misclassified as AEs.

All Benign clean samples passed the detector. DE refers to the

detected samples (lower is better).

Class # Samples # DE % DE

Benign 600 0 0%

Gafgyt 2,217 206 9.29%

Mirai 473 0 0%

Tsunami 52 0 0%

Overall 3,342 206 6.16%

Fig. 13: Effect of varying the detector threshold (α) on the

detection error. The selected α in Soteria is the intersection

between the error rates of normal and adversarial samples.

include it in the comparison. Our evaluation shows that Soteria

outperforms the existing systems, as particularly shown in the

Tsunami classification and overall accuracy rate.

Analysis. Recall that the accuracy of our AE detector was

97.79%, meaning that 2.21% of the AEs were not detected

by Soteria, and were forwarded to the classifier. Given it’s

application, it is important to understand the classifier’s be-

havior against those samples. Table VIII shows the classifier’s

behavior over these samples. The classifier detects them as

benign or Gafgyt, with a large percentage (76.1%) of the

samples classified as benign. It is worth noting that the

targeted classification is not valid in this design, as Fig. 9(b),

Fig. 10(b), and Fig. 11(b) show a clear difference in the

feature representation between clean and AEs. However, due

to the variety in the benign samples’ features distribution, the

adversarial examples that pass the detector are likely to be

classified as benign. This can be critical, even with a detection

rate of as high as 97.79%, given the application domain.

V. DISCUSSION

System Robustness. Our evaluation shows that Soteria is

robust, with the ability to detect AEs with an accuracy of

97.79%, and a trade-off of detecting 206 Gafgyt samples as

adversarial. Moreover, Soteria outperforms other systems over

the same training and testing datasets. The compared systems

had an overall low Tsunami classification accuracy, due to the

small dataset. Soteria, on the other hand, and using a majority

voting system, achieved an accuracy of 100% in classifying

TABLE VII: Classification performance of Soteria dense-,

level-, and voting-based classification systems in classifying

normal (non-adversarial) samples.

Class

Model Accuracy

Soteria
[9]

[5]

DBL LBL Voting 24× 24 48× 48
Benign 99.45 99.70 100 99.00 99.00 99.50

Gafgyt 99.70 97.00 100 98.55 98.87 99.14

Mirai 99.49 98.73 99.36 97.67 92.81 92.81

Tsunami 100 100 100 84.61 32.69 59.61

Overall 99.63 97.77 99.91 98.29 97.01 97.70

TABLE VIII: Soteria’s classifier predictions over AEs misde-

tected by the detector. Most of the misdetected samples are

generated using GEA with large size selected samples.

Class Size # AE
Classification

Benign Gafgyt Mirai Tsunami

Benign

Small 1 1 0 0 0

Medium 3 1 2 0 0

Large 402 287 115 0 0

Gafgyt

Small 10 10 0 0 0

Medium 0 0 0 0 0

Large 5 4 1 0 0

Mirai

Small 4 4 0 0 0

Medium 5 5 0 0 0

Large 181 145 36 0 0

Tsunami

Small 1 1 0 0 0

Medium 3 3 0 0 0

Large 42 39 3 0 0

Tsunami sample. In fact, the majority voting classifier only

failed in classifying three Mirai samples in the evaluation,

classifying them as benign samples.

Operation Mode for Detector. Soteria is used to distinguish

AEs and detect them. To enable Soteria’s operation, the

extracted features distribution of normal and AEs should be

different. Moreover, we argue that the detector should not be

aware of the AEs and their patterns in the training process,

as this will bias the detector’s performance towards specific

attacks, decreasing the robustness against other attacks.

Adversarial Capabilities. In section II-D, we discuss the

threat model and adversarial capabilities. We assumed that the

adversary can access the source code of the samples, and can

modify and merge them. Moreover, he has prior knowledge

of the design and its internal architecture. Soteria’s success

implies that the adversary cannot generate practical AEs. What

the adversary does not have in Soteria is the ability to know in

advance what features are being used for the classifier, since

those features are randomized for every run of the system.

For instance, inserting a single block with a low density near

the exit block will not highly affect the labeling of the sample,

and will not be detected as an AE by Soteria. However, Soteria

can classify the sample to its original class, since the labels

are intact. Moreover, the adversary needs to ensure that the

labels change in such a way the classification decision will

be toggled, without being detected by the AE detector, which

896

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

happened in our evaluation in 2.21% of the generated AEs.

Finally, and due to the change in the labeling, the adversary

cannot force the classifier into a targeted misclassification.

Alternative Features for Classifier. In Soteria, we built a

classifier that is based on the utilized features from the detector

design process. However, the classifier can be replaced, with

some caveats. The detector decision is based on the extracted

CFG. Appended binaries at the end of the file will not affect

the detector decision. Clean samples with adversarial binaries

appended to them will not be detected as AEs by Soteria.

While this is an advantage of Soteria classifier, it is equally

a serious shortcoming with other approaches, such as image-

based malware classifiers [34]. Ideally, the classifier should

be at least as good as the classifier proposed in this paper,

meaning that it should only consider the executable binaries

in the classification process. Moreover, the discriminative fea-

tures are highly distinguishable among classes, and the feature

extraction process is immune to feature space manipulation.

Limitations. Our work has two major limitations. 1 CFG-

based Features: CFG-based features are effective compared

to other feature designs. However, CFG does not necessarily

reflect the actual code. Editing the code without even changing

the functionality (by creating an equivalence) would affect

the structure of the CFG, which might be exploited by the

adversary to evade detection in the first place. For example,

an adversary may inject a sample of code that would not result

in a new branching, but would still affect the structure of

the CFG. While such an event is well within the scope of

our adversary model, and would not affect the classification

results, it would only affect the feature space, requiring us to

retrain Soteria to capture the new feature space. 2 Binary

Obfuscation: Obtaining a representative CFG would not be

possible under obfuscation, typically done using string ob-

fuscation, resulting in hiding parts of the code, or function

obfuscation, resulting in an incomplete CFG. An incomplete

CFG may result in an incomplete feature representation of

the sample, and thus a misclassification. Obfuscation is a

shortcoming of our work, and deobfuscation is an active

research area in its own right, where developed tools can be

used as the basis for our work to obtain representative CFGs.

VI. RELATED WORK

Machine and deep learning algorithms are widely leveraged

towards securing software against adversaries in general and

detecting malware in particular. For instance, Alasmary et al.

[3] analyzed two prominent malware, IoT and Android, based

on the CFG-graph representation of the malicious software.

Moreover, Alam et al. [35] analyzed the malware and proposed

a malware detection system to detect malware with even

small CFGs and then addressing the changes occurred in the

frequencies of opcodes. Bruschi et al. [36] proposed a malware

detection method that uses two CFG techniques to compare

and detect malware based on two CFGs of malware code and

other known malware.

Several research works have been proposed to defend

against adversarial machine learning. Most of these approaches

are image-based methods. For example, Goodfellow et al. [10]

proposed to train the model with a set of AEs to minimize the

test error between the real and AEs of the model’s result.

Papernot et al. [37] designed a network distillation model

to defend against adversarial attacks such as fast gradient

sign method [10] and L-BFGS attack [38]. Cui et al. [39]

introduced a malware detection method for malicious codes

using deep learning by transferring the malicious code into

grayscale images. Ni et al. [40] proposed a malware family

classification system that converts malicious codes of nine

different malware families into grayscale images. Metzen et al.

[13] proposed a detection method for adversarial perturbation

over trained AEs. Moreover, Rozsa et al. [41] proposed a

machine learning model that tested the adversarial examples.

They correlate their robustness of the three adversarial attacks

to the accuracy of eight deep network classifiers. In addition,

Miyato et al. [26] proposed a detection method on the text

domain. They trained the model over adversarial examples

that apply small perturbation to the word that is embedded

in RNN.

Several methods have been proposed to generate adversarial

examples that can manipulate the desired output to fool the

classifiers [9], [10], [11], [12]. Adversaries can make small

modifications to the malware to misclassify them as benign,

yet they remain malware files [42], [43]. Other methods apply

and add small noise or perturbation to optimize the images to

generate the adversarial examples [44], [10], [45]. For exam-

ple, Carlini and Wagner [45] proposed three adversarial attacks

against distilled neural networks that break many defenses

models. Moreover, Moosavi-Dezfooli et al. [12] proposed

a DeepFool method that generates minimal perturbation to

change the classification labels based on iterative linearization

of the classifiers. Recently, Abusnaina et al. [9] proposed

adversarial attacks over the CFGs of malware binaries through

designing two adversarial attacks to craft the IoT detector.

VII. CONCLUSION

In this paper, with Soteria, we address the need to detect

adversarial machine learning attacks by proposing an adver-

sarial machine learning detector for IoT malware. Particu-

larly, Soteria defends the CFG-based classifiers for malware

detection against the AEs. The first component, the AE

detector, is a Control Flow Graph (CFG)-based model that

can detect adversarial samples without training the model

over adversarial samples (as shown by prior works). The

model computes the reconstruction error between the input

data and the reconstructed output of the auto-encoder, and uses

a threshold to detect the adversarial samples with an overall

accuracy of 97.79%. Additionally, the second component of

Soteria performs a family-based classification with an accuracy

of 99.91% on the clean samples. These two models operate

independently, increasing the robustness of Soteria.

Acknowledgement. This work was supported by Cyber-

Florida Collaborative Seed Award and NRF under grant

2016K1A1A2912757.

897

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the
rise of DGA-based malware,” in USENIX Security, 2012, pp. 491–506.

[2] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” in USENIX Security, 2003.

[3] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and Detecting
Emerging Internet of Things Malware: A Graph-based Approach,” IEEE

Internet of Things Journal, 2019.
[4] A. Mohaisen and O. Alrawi, “Unveiling Zeus: automated classification

of malware samples,” in the 22nd International World Wide Web

Conference, WWW, 2013, pp. 829–832.
[5] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen, “Detection of

malicious code variants based on deep learning,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.
[6] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-fidelity,

behavior-based automated malware analysis and classification,” Com-

puters & Security, vol. 52, pp. 251–266, 2015.
[7] D. Kong and G. Yan, “Discriminant malware distance learning on

structural information for automated malware classification,” in The 19th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD, 2013, pp. 1357–1365.
[8] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control

flow graphs using deep graph convolutional neural network,” in 49th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, DSN, 2019, pp. 52–63.
[9] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and

A. Mohaisen, “Adversarial learning attacks on graph-based IoT malware
detection systems,” in the 39th IEEE International Conference on

Distributed Computing Systems, ICDCS, 2019.
[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” in the 3rd International Conference on Learning

Representations, ICLR, 2015.
[11] W. Hu and Y. Tan, “Generating adversarial malware examples for black-

box attacks based on GAN,” arXiv preprint arXiv:1702.05983, vol.
abs/1702.05983, 2017.

[12] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2574–2582.
[13] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detect-

ing adversarial perturbations,” in the 5th International Conference on

Learning Representations, ICLR, 2017.
[14] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,

C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in The 26th European

Signal Processing Conference, EUSIPCO, 2018, pp. 533–537.
[15] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and

J. Keshet, “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” in Workshop on Security in Machine Learning

(NIPS), 2018.
[16] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine

learning malware detection,” Black Hat, 2017.
[17] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in the

23rd Network and Distributed System Security Symposium, NDSS, 2016,
pp. 21–24.

[18] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in the 26th European

Signal Processing Conference, EUSIPCO, 2018, pp. 533–537.
[19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, NIPS, 2014, pp.
2672–2680.

[20] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in 25th Annual Network and

Distributed System Security Symposium, NDSS, 2018.
[21] D. Meng and H. Chen, “Magnet: A two-pronged defense against

adversarial examples,” in ACM Computer and Communications Security,

CCS, 2017, pp. 135–147.
[22] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against

adversarial attacks using high-level representation guided denoiser,” in

IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2018, pp. 1778–1787.

[23] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for
robust adversarial defense,” in the 6th International Conference on

Learning Representations, ICLR, 2018.
[24] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation

as a defense to adversarial perturbations against deep neural networks,”
in IEEE Security and Privacy, SP, 2016, pp. 582–597.

[25] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” in the 6th

International Conference on Learning Representations, ICLR, 2018.
[26] T. Miyato, A. M. Dai, and I. J. Goodfellow, “Adversarial training

methods for semi-supervised text classification,” in the 5th International

Conference on Learning Representations, ICLR, 2017.
[27] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for

networks,” in the 22nd ACM International Conference on Knowledge

Discovery and Data Mining, KDD, 2016, pp. 855–864.
[28] Developers. (2019) Cyberiocs. Available at [Online]: https://freeiocs.

cyberiocs.pro/.
[29] Developers. (2019) Github. Available at [Online]: https://github.com/.
[30] Developers. (2019) Radare2. Available at [Online]: https://https://rada.

re/r/.
[31] Developers. (2019) VirusTotal. Available at [Online]: https://www.

virustotal.com.
[32] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A

tool for massive malware labeling,” in Processing of the International

Symposium on Research in Attacks, Intrusions, and Defenses, RAID,
2016, pp. 230–253.

[33] T. P. Minka, “Automatic choice of dimensionality for PCA,” in Advances

in Neural Information Processing Systems 13, Papers from Neural

Information Processing Systems (NIPS), 2000, pp. 598–604.
[34] X. Liu, J. Zhang, Y. Lin, and H. Li, “ATMPA: attacking machine

learning-based malware visualization detection methods via adversarial
examples,” in International Symposium on Quality of Service, IWQoS,
2019, pp. 38:1–38:10.

[35] S. Alam, R. N. Horspool, I. Traoré, and I. Sogukpinar, “A framework
for metamorphic malware analysis and real-time detection,” Computers

& Security, vol. 48, pp. 212–233, 2015.
[36] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating

malware using control-flow graph matching,” in Detection of Intrusions

and Malware, and Vulnerability Assessment Conference, DIMVA, 2006,
pp. 129–143.

[37] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” vol. abs/1602.02697, 2016. [Online].
Available: http://arxiv.org/abs/1602.02697

[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in International Conference on Learning Representations, ICLR, 2014.

[39] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, “Detection
of malicious code variants based on deep learning,” Trans. Industrial

Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.
[40] S. Ni, Q. Qian, and R. Zhang, “Malware identification using visual-

ization images and deep learning,” Computers & Security, vol. 77, pp.
871–885, 2018.

[41] A. Rozsa, M. Günther, and T. E. Boult, “Are accuracy and robustness
correlated,” in the 15th IEEE International Conference on Machine

Learning and Applications, ICMLA, 2016, pp. 227–232.
[42] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware

classification using random projections and neural networks,” in IEEE

International Conference on Acoustics, Speech and Signal Processing,

ICASSP, 2013, pp. 3422–3426.
[43] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,

“Adversarial perturbations against deep neural networks for malware
classification,” vol. abs/1606.04435, 2016.

[44] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in the 5th International Conference on Learning

Representations, ICLR, 2017.
[45] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of

neural networks,” in IEEE Symposium on Security and Privacy, SP,
2017, pp. 39–57.

898

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:19:07 UTC from IEEE Xplore. Restrictions apply.

