
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022 2485

SHELLCORE: Automating Malicious IoT Software
Detection Using Shell Commands Representation

Hisham Alasmary , Afsah Anwar, Ahmed Abusnaina , Graduate Student Member, IEEE,
Abdulrahman Alabduljabbar, Mohammed Abuhamad , An Wang , Member, IEEE, Daehun Nyang ,

Amro Awad , and David Mohaisen

Abstract—The Linux shell is a command-line interpreter that
provides users with a command interface to the operating system,
allowing them to perform various functions. Although very use-
ful in building capabilities at the edge, the Linux shell can be
exploited, giving adversaries a prime opportunity to use them
for malicious activities. With access to Internet of Things (IoT)
devices, malware authors can abuse the Linux shell of those
devices to propagate infections and launch large-scale attacks,
e.g., Distributed Denial of Service. In this work, we provide a first
look at the tasks managed by shell commands in Linux-based IoT
malware toward detection. We analyze malicious shell commands
found in IoT malware and build a neural network-based model,
ShellCore, to detect malicious shell commands. Namely, we col-
lected a large data set of shell commands, including malicious
commands extracted from 2891 IoT malware samples and benign
commands collected from real-world network traffic analysis and
volunteered data from Linux users. Using conventional machine
and deep learning-based approaches trained with a term- and
character-level features, ShellCore is shown to achieve an accu-
racy of more than 99% in detecting malicious shell commands
and files (i.e., binaries).

Manuscript received January 1, 2021; revised March 19, 2021 and April
28, 2021; accepted May 26, 2021. Date of publication June 3, 2021; date
of current version February 4, 2022. This work was supported in part by
the Global Research Laboratory (GRL) Program of the National Research
Foundation (NRF) funded by the Ministry of Science, Information, and
Communication Technologies (ICT) and Future Planning under Grant NRF-
2016K1A1A2912757; in part by Air Force Research Laboratory (AFRL)
Summer Program; in part by NSF under Grant CNS-1809000 and Grant CNS-
1814417; in part by Cyber Florida Seed Grant; in part by the Institute for
Smart, Secure and Connected Systems at Case Western Reserve University
through a grant provided by the Cleveland Foundation. (Hisham Alasmary
and Afsah Anwar contributed equally to this work.) (Corresponding author:
David Mohaisen.)

Hisham Alasmary is with the Department of Computer Science, King
Khalid University, Abha 61421, Saudi Arabia, and also with the Department
of Computer Science, University of Central Florida, Orlando, FL 32816 USA.

Afsah Anwar, Ahmed Abusnaina, Abdulrahman Alabduljabbar, and David
Mohaisen are with the Department of Computer Science, University of Central
Florida, Orlando, FL 32816 USA (e-mail: mohaisen@ucf.edu).

Mohammed Abuhamad was with the the Department of Computer Science,
University of Central Florida, Orlando, FL 32816 USA. He is now with the
Department of Computer Science, Loyola University Chicago, Chicago, IL
60660 USA.

An Wang is with the Department of Computer and Data Science, Case
Western Reserve University, Cleveland, OH 44106 USA.

Daehun Nyang is with the Cyber Security Major, Division of Software and
Engineering, Ewha Womans University, Seoul 03760, South Korea.

Amro Awad is with the Department Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27695 USA.

Digital Object Identifier 10.1109/JIOT.2021.3086398

Index Terms—Internet of Things (IoT) security, Linux shell
commands, machine learning, malware detection.

I. INTRODUCTION

INTERNET OF THINGS (IoT) manufacturers and appli-
cation developers have started to discover the benefits of

the edge computing paradigm and do more compute and ana-
lytics on the devices themselves. The on-device approaches
help reduce latency for critical applications, lower dependence
on the cloud, and better manage the massive data generated
by the IoT devices. An example of this trend is the Nest
Cam IQ indoor security camera [1], which uses on-device
vision processing power to watch for motion, distinguish fam-
ily members, and send alerts. Such a paradigm provides new
opportunities for IoT applications [2], [3]. To unleash the
power of Linux-based systems, IoT devices at the edge employ
shell commands, which would seamlessly allow invocation of
Linux capabilities. This utilization, which is essential for many
edge applications, is sometimes exploited by malicious actors
(malactors) to launch malicious activities and automate attacks
and malware proliferation.

Indeed, the increasing use of IoT devices for everyday activ-
ities has been paralleled with IoT’s susceptibility to risks,
including significant attack vectors, such as vulnerabilities
in the hardware and software stacks and the use of default
usernames and passwords. Those attack vectors are demon-
strated by major high bandwidth Distributed Denial-of-Service
(DDoS) attacks. The targets of those attacks include large
companies, such as Github [4] and Dyn [5]. To launch those
attacks, the attackers exploit infected IoT devices for execut-
ing a series of commands for malware and attack propagation.
Since most IoT and embedded devices use a packed version of
the software, such as Busybox [6], to implement Linux capa-
bilities, the attacks are designed as task managed through the
Linux/Unix-based shell commands.

The Linux shell as an entry point to IoT devices
is accessible to many attacks, including brute-force,
privilege escalation, shellshock, and other vulnerabilities
(e.g., CVE-2018-9310, CVE-2019-1656, CVE-2018-0183, and
CVE-2017-6707) [7]–[10]. Using secondary information, such
as the listings of IoT and embedded devices on the likes of
Shodan [11], adversaries can utilize default passwords to con-
nect to arbitrary devices on the Internet, gain control over
them, and use them for their malicious activities through

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6482-3968
https://orcid.org/0000-0001-5032-3412
https://orcid.org/0000-0002-3368-6024
https://orcid.org/0000-0002-1701-9176
https://orcid.org/0000-0001-5183-891X
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0003-3227-2505

2486 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

remote access and automation tools. For example, a simple
“default password” search on Shodan returns 72 763 results,
which all can be accessed, and used for attacks.

Shell commands are heavily utilized in IoT malware and
botnet operation. Malware-infected hosts use command and
control (C2) servers to obtain payloads that include instruc-
tions to compromised machines (or bots). Such instructions
aim to synchronize actions and cycles of activities to attack
targets and propagate the recruitment of new bots that even-
tually become a source of propagation. In this example,
bots use the shell to execute chmod command to change
privileges. Moreover, bots also use the shell to launch a dic-
tionary brute-force attack and to propagate by connecting
to the C2 server to download instructions using the HTTP
protocols. To launch an attack, a bot typically obtains a
set of targets from a dropzone by invoking a set of com-
mands that use the shell to flood the HTTP of a victim
and to remove the traces of execution by executing the rm
command [12].

Significance: Detecting the malicious tasks managed
through shell commands is essential. While the prior works
have studied the malicious use of Windows PowerShell, the
malicious use of the Linux shell for attack automation in IoT
devices is not fully investigated. This work aims to study
the tasks managed through shell commands that appear in
the static analysis of IoT malware binaries and understand
their intrinsic features toward their detection. It is important
to note that there have been some work on understand-
ing shell commands and their use by malicious software in
the literature. However, the majority of the prior work has
focused on other shell interpreters (e.g., power and Web),
and the emergence of Linux-based IoT malware that heavily
uses shell commands makes the detection of shell com-
mands associated with malicious IoT software of paramount
importance.

Our Approach: To address this threat, in this work, we
design, implement, and evaluate ShellCore, a system for
detecting malicious shell commands used in IoT malware.
To evaluate ShellCore, we collect a data set of residual shell
commands from IoT malware samples. Our preliminary anal-
ysis shows that shell commands can be found embedded in
the disassembled code of malware binaries. Therefore, we
employ static analysis to search through the disassembled
malware code to extract the shell used in the malware sam-
ples. For the shell commands that were initiated by a benign
process, we collect a data set from benign applications and
users. In particular, we use the traffic generated from applica-
tions in a real-world environment. For analyzing and detecting
malicious commands, ShellCore employs a natural language
processing (NLP) approach for feature generation, followed
by deep learning-based modeling for detecting malicious
commands.

Contributions: This work aims to utilize static analysis to
detect the malicious use of shell commands in IoT binaries
and use them as a modality for IoT malware detection. As
such, we make two broad contributions.

1) C-1: Using shell commands extracted from 2891 recent
IoT malware samples along with a benign data set,

we design a detection system that can detect mali-
cious shell commands with an accuracy of more than
99%. Compared to the state-of-the-art approaches, our
system is more efficient and accurate. Using term- and
character-level features, the feature space on the shell
commands is easy to explain and interpret. Features con-
tributing to malicious behaviors can be easily identified
so that shell commands could be restricted to legitimate
use.

2) C-2: We extend our command-level detection approach
and design a detection model for malicious files (mal-
ware samples), which often include multiple commands.
Extending the results of detecting individual com-
mands, we group the commands by file and detect the
malicious files with an accuracy of more than 99%.
Furthermore, acknowledging the different variants and
flavors of Linux/Unix-like operating systems (OSs),
which presents the complexity of encompassing all sup-
ported commands in these systems, we conduct a set
of experiments by exclusively learning upon the mali-
cious data set followed by testing upon the benign and
the malicious data set. Our detection approach can be
applied to files compiled for any processor architecture
[e.g., ARM, MIPS, Power principal component (PC),
etc.] as long as the shell commands are extracted, which
can be done efficiently.

Organization: The remainder of this article is organized as
follows. In Section II, we present the problem statement and a
high-level overview of our approach. In Section III, we review
our approach in detail; the feature extraction respecting vari-
ous specifics of the application domain, learning algorithms,
and representations. In Section IV, we review the evalua-
tion of our approach; heuristics developed for extracting shell
commands from malicious binaries and benign use contexts,
evaluation metrics and settings, and results. In Section VI we
review the related work, and finally, draw concluding remarks
in Section VII.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

In this section, we begin with the problem statement and a
high-level overview of our approach.

A. Problem Statement

The problem we tackle in this article is malware detection
using shell commands. Given the modality of the analysis
of interest, we are also interested in determining whether a
given shell command extracted from a binary or a use context
is malicious or benign. We approach this problem systemati-
cally by modeling shell commands that appear in the residual
artifacts of IoT malware binaries.

The shell command classification problem is formally
defined as follows. First, let {xi, yi}N

i=1 be a training set, where
xi ∈ R

d, yi ∈ {0, 1}; that is, xi is a feature representation of a
shell command ci, where the representation has d real-valued
features, and yi is the corresponding label of “zero” if xi is
a shell command initiated by a benign process, and “one”
otherwise. The classification problem of shell commands is

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

ALASMARY et al.: SHELLCORE: AUTOMATING MALICIOUS IoT SOFTWARE DETECTION USING SHELL COMMANDS REPRESENTATION 2487

formulated as finding a set of parameters that make up a func-
tion f such that f (xi) = ŷi where ||yi−ŷi|| for all i is minimized
(i.e., minimal prediction error). The transformation of ci into
xi is called feature extraction, denoted by �(ci) = xi, and is a
central contribution of this work through character- and word-
level representations. We use those two approaches for their
prevalence in representing text and text-like data, which is the
case of shell commands.

The malware detection problem is defined as an extension
of the shell command-level classification problem. For that,
we use a combined set of shell commands associated with
each malware sample as a representation to conduct malware
detection. The same definition above is extended to malware si,
where si is a collection of shell commands cj

i, for j = 1, . . . , k,
where xj is the corresponding feature representation of the mal-
ware sample si. Note that the same function � can be extended
for the feature representation (e.g., the features associated with
the different commands extracted from the same binary sample
can be stacked to represent the binary). Similarly, the func-
tion f is defined for the binary level from the command-level
classification.

B. High-Level Overview of Our Approach

The shell is a single point of entry for malware to launch
attacks. As such, detecting malicious commands before they
are executed on the host will help secure the host. Even though
the malware aims to exploit a vulnerability in the device
to access its shell, detecting the malicious commands will
help mitigate such exploits. Our analysis highlights the use
of shell commands for infection, propagation, and attack by
malware. The Linux capabilities of embedded IoT devices give
adversaries the required power to abuse the shell.

Objectives: The main objective of ShellCore is to effec-
tively detect malicious IoT binaries (files) based on their usage
of the shell commands. Upon detecting individual malicious
shell commands (i.e., shell commands associated with mal-
ware samples), it will be natural to extend the detection to
malicious binaries (files) as a whole. Thus, we break down
the problem into two parts—1) detecting malicious commands
and 2) detecting malicious files.

High-Level Design: Our design operates on various bina-
ries of malicious and benign IoT programs. The key idea of
ShellCore is to employ static program analysis tools to extract
meaningful representations that can be used eventually to dis-
tinguish benign and malicious binaries. To do so, we start
with (potential) IoT malware samples and disassemble them
to extract shell commands. We establish various heuristics for
extracting those commands, and we outline those heuristics
in Section IV. We repeat the process for (potentially) benign
samples and explore the power of our representation for mal-
ware detection. To make the processing of these commands
computationally tractable, we embed those commands into a
representation space by extracting term- and character-level
feature representations from them using the bag-of-words tech-
nique, commonly used in NLP tasks. Along with the bag of
words, we use the n-grams to represent the commands as fea-
ture vectors. Given that those representations may result in

Fig. 1. Workflow of ShellCore, highlighting the sources of data and its
division by class (malicious or benign). The raw data are preprocessed to
extract shell commands. The shell commands are represented as 1) characters
and 2) words, which are fed to learning networks for detection.

high-dimensional data representation, we employ the principal
component analysis (PCA) for feature reduction before imple-
menting the classification over commands (see Section II-A
for problem statement).

Upon representing the malicious and benign commands as
feature vectors, ShellCore aims to detect malicious commands,
as shown in Fig. 1. To do so, ShellCore employs machine
learning algorithms to classify commands. We use both simple
and more advanced (deep) learning approaches. For evalua-
tion, we use cross-validation to address bias and to ensure
the generalization capabilities of the model. Using the same
model architecture, we extend the detection system to detect
malicious IoT binaries. To do so, we group the commands by
each malware sample and benign application in one single set
that is represented as one feature vector to be classified.

III. OUR DETECTION SYSTEM: SHELLCORE

The core of our detection system is a deep learning model
built on top of NLP-based features. To better help learn the
specifics of shell commands, we tune the default NLP algo-
rithms to enrich the feature representations of the commands.
We represent the commands as feature vectors using the bag-
of-words approach. Then, we reduce the feature space using
PCA. ML-based algorithms are then used for malicious com-
mand and sample detection. In the following, we review the
technical details of our detection system’s feature extraction
and classification methods.

A. Feature Extraction and Reduction

The feature extraction process aims to present the attributes
of samples by cleansing and linking the data and transform-
ing it into a format that is easier to process by the employed
algorithms for detection. In this section, we discuss selecting
features that better represent the characteristics of the samples
in the data set. There are many methods of feature extraction
depending upon the nature of the data. Considering the textual
nature of our samples, we focus on text-based representation
methods. Toward this, we leverage the term-level NLP-based
approach by considering words in the samples as features.
Additionally, since such an approach misses crucial attributes,
we then employed a character-level NLP approach to meet our
goals.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

2488 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

1) Term-Level NLP-Based Model: We leverage NLP for
feature generation by considering independent words as fea-
tures and the occurrence of space and/or characters as tok-
enizers. In contrast, words with a length greater than two are
considered in the bag of words for feature vector creation. We
adopt the bag-of-words approach, along with n-grams. Let I1
be the words in a command, and N be the total number of
words in the command. Therefore, each word in the com-
mand can be represented as I1i, where i ∈ [1, N], such that
I1 = I11, I12, I13, . . . , I1N .

2) Character-Level NLP-Based Model: The term-level
NLP-based approach does not take the operational symbols,
such as the logical operators, in a command into consider-
ation, which undermines many discriminating and dominant
characteristics of the shell command, thereby not representing
the commands accurately. The presence of many shell com-
mands utilizing keywords l ≤ 2 calls for building a more
accommodating feature generation mechanism. To do so, we
changed the boundaries of the definition of a word by consid-
ering every space, special characters, alphabets, and numbers
as words, along with the n-grams and command statistics.
This augments our vocabulary with more granular features
to capture the attributes precisely. Let I2 be a representa-
tion of each character, alphabet, number, etc., constituting a
command, and N be the total number of such constituents in
the command. Therefore, every such constituent in the com-
mand can be represented as I2j, where j ∈ [1, N], such that
I2 = I21, I22, I23, . . . , I2N .

3) Feature Representation: To represent every element in
the data set from a defined reference point, they are rep-
resented with respect to axes in space. In particular, every
command/sample in the data set is represented as a feature
vector in the defined feature space. We begin by finding the
feature space to determine the dimensionality of the vectors.
Particularly, commands are augmented such that every com-
ponent of the commands in the data set has representation
in the feature space. Every command in the data set is then
represented in the space of n axes, where n is the size of
feature space. To do so, we devise multiple representations
of the commands, including the words in the commands and
splitting the commands by spaces and every special charac-
ter. We also form a feature vector by considering every letter
and special character as corresponding features in the formed
vector. We implemented the bag-of-words method to define
our feature space. The rest of this section explains our feature
representation mechanism.

4) Bag of Words as Command Embedding: We generate a
representation of commands/samples using the bag-of-words
technique. Depending upon the splitting pattern of the samples,
we create a central vector that stores all words in the samples.
Each sample in the data set is then mapped to an index in the
sparse vector representation, i.e., the feature vector for every
element in the data set, where the vector has an index for
every word in the vocabulary. The final vector is represented
as the occurrence of each word from the vocabulary in a given
command (i.e., multihot encoding).

Specifically, to generate the vector representation of each
command or sample, we first created a corpus consisting of

the character-level and term-level combinations, referred to as
tokens, occurring in either malware or benign commands. The
vector for each command or sample reflects the frequency of
each token in the shell command or sample, respectively.

5) Encoding Syntax: A vital characteristic of the commands
is their syntax. This syntax depends on the structure of the
command. Therefore, in addition to the standard features gath-
ered from commands, we also augment the feature space with
feature proximity to capture the structure of the commands.
To do so, we also include the features of n-grams. Every n
contiguous words in a sample’s shell commands are consid-
ered as a feature. When using n-grams as features, every n
contiguous words occurring in a sample are added to the bag
of words corresponding to them in the feature space.

For the two models mentioned above, we create their respec-
tive bag of words. The bags contain words Ik

1i, where i ∈ [1, N]
and k ∈ [1, m], such that N is the number of words in a
command and k is the total number of commands in the
data set, along with n-grams. Therefore, the words in all the
commands as per the term-level NLP model can be com-
bined as I1

11, I2
11, I3

11, . . . , I1
12, I1

13, . . . , Im
1N Let B be the bag

of word for the data set, such that B = B1, B2, B3, . . . , Bt,

where t ≤ m ∗ N and Bp, such that p ∈ [1, t], is unique
in B. Moving forward, each command Ii, where i ∈ [1, N],
can be represented as a feature vector (F) with respect to the
bag of words B, such that the tth index be represented as the
frequency of occurrence, of the tth word in the bag, in the com-
mand. F = fB1 , fB2 , fB3 , . . . , fBt , such that fBp , where p ∈ [1, t],
depicts the frequency of the word, appearing at index p in the
bag B, in the command Ii.

6) Feature Reduction: We capture as many features as pos-
sible to achieve accurate results. However, beyond a certain
point, the model may suffer from the curse of dimensionality,
which causes the model’s performance to become inversely
proportional to the number of features. The usage of a wide
variety of features to represent samples leads to a high-
dimensional feature vector, leading to: 1) high cost to perform
learning and 2) overfitting, i.e., the model may perform very
well on the training data set but poorly on the test data set.

Dimensionality reduction or feature reduction is applied
with the aim of addressing the two problems. We implement
PCA for feature reduction to improve the performance and
the quality of our classifier of ShellCore, where the PCA fea-
tures (components) are extracted from the raw features. PCA
is a statistical technique used to extract features from multiple
raw features, where raw features are n-grams and statistical
measurements. PCA creates new variables, named PCs. PCs
are linear combinations of the original variables, where a pos-
sible number of correlated variables are transformed into a
low dimension of uncorrelated PCs (thus, the quality improve-
ment). PCA normalizes the data set by transforming them into
a normal distribution with the same standard deviation [13],
resulting in a standard representation of variables in order
to identify a subset that can best characterize the underlying
data [14].

We reduce the d-dimensional vector representation of com-
mands to q number of PCs onto which the retained variance
under projection is maximal.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

ALASMARY et al.: SHELLCORE: AUTOMATING MALICIOUS IoT SOFTWARE DETECTION USING SHELL COMMANDS REPRESENTATION 2489

B. Classification Methods

After representing each sample as a feature vector, we
classify them into malicious and benign by leveraging the
ML-based algorithms.

Logistic Regression (LR): LR is a statistical method that
employs a logistic function to model a binary-dependent vari-
able, referred to as binary classification (“0” or “1”). Given
(X, Y) as an input training set, LR learns to differentiate
between positive (“1”) and negative (“0”) segments for each
category, with the assumption that they have a linear rela-
tionship. LR, in the higher domain, estimates and optimizes
the boundary between the positive and negative classes by
minimizing the following function:

Loss(f (X), Y) =
{− log(f (X)), Y = 1

− log(1 − f (X)), Y �= 1
(1)

where f (X) is the LR model’s current prediction and Y are the
labels of the ground-truth set.

Random Forest (RF): RF is a nonlinear classification algo-
rithm that consists of N decision trees each of which is trained
on a collection of random features. The RF method reduces
the variation in the performance of individual trees and min-
imizes the impact of noise on the training process. The final
prediction of RF classifier with N decision trees is determined
by a majority vote over the predictions or by averaging the
prediction of all trees, determined as follows:

fRF = 1

N

N∑
n=1

fn
(
X′

s

)
(2)

where for a randomly selected feature set, (X′
. ⊂ X.), fn is the

nth tree’s prediction and X′
s is the segment’s s vector.

1) Deep Neural Networks: The deep neural network (DNN)
is a type of connected and feedforward neural networks with
multiple hidden layers between the input and output layers.
The hidden layers consist of a number of parallel neurons,
connected with a certain weight to all nodes in the following
layers to generate a single output for the next layer. Given a
feature vector X of length q and target y, the DNN-based clas-
sifier learns a function f (.) : Rq −→ Ro, where q is the input’s
dimension and o is the output’s dimension. With multiple hid-
den layers, the dimension of the output of every hidden layer
decreases with transformation. Each neuron in the hidden layer
transforms the values of the preceding layer using linearly
weighted summation, w1 + w2 + w3 + · · · wq, which passes
through a ReLU activation function (y(x) = max(x, 0)). The
output of the hidden layers is then fed to the output layer,
and passed to a softmax activation function h, defined as
h(x) = [1/(1+e−x)], outputting the prediction of the classifier.

C. Term- and Character-Level NLP-Based Approaches

1) Term-Level NLP-Based Model: The term-level learning
model uses words as features, with spaces and other special
characters as tokenizers. Additionally, it does not consider
words less than three characters long. To better represent the
locality of the words, the model utilizes n-grams. Notably, it
uses 1- to 5-grams, with tenfold cross-validation.

2) Character-Level NLP-Based Model: We note that the
term level considers the words and neglects the characters,
spaces, and words with a length of less than three. This, in
turn, presents a significant shortcoming, since a large number
of command keywords have a length of fewer than three char-
acters, including cd and ls, or consist of special characters,
such as || and &&. To address the shortcoming, we create the
feature generation step considering these important domain-
specific characteristics that would otherwise be ignored. To
do so, we change the way in which a word is defined by care-
fully declaring the tokenizers such that no character is ignored.
Subsequently, the changed bag of words considers the char-
acter level and contains every letter, number, and character
represented as an individual feature.

IV. EVALUATION AND DISCUSSION

We divide our evaluation into two parts. First, we build a
detection system to detect malicious commands by consider-
ing every individual command in the data set. Second, this
detection system is then extended to detect malicious files,
where the above commands corresponding to an application
are combined together when representing a single file as a
feature vector of multiple commands.

We provide further details of the data sets, their charac-
teristics, and the utilized evaluation metric. We then describe
the term-level and character-level NLP-based models. Finally,
we describe how these two models are leveraged for detecting
individual commands and malicious files.

In addition to the placement of the letters, characters, and
spaces, we also consider combinations of these elements in the
form of n-grams (up to 5-grams) into a vector space. Finally,
for feature reduction, we use PCA such that the feature rep-
resentations preserve 99.9% of the variance in the training
data set.

To set out, we begin by describing the process of assem-
bling the data set used in this evaluation. We obtain our shell
commands by statically disassembling the malware binaries
and extracting shell command strings (following some regular
expression rules).

A. Malicious Data Set and Commands Extraction

We obtain a data set of 2891 randomly selected IoT
malware samples from the IoTPOT project [15], a honey-
pot emulating IoT devices. IoTPOT emulates services, such
as telnet and other vulnerable services, including those of
specific devices with distributed proxy sensors in several
countries [16]. Additionally, IoTPOT covers eight different
architectures. Table I depicts the malware distribution accord-
ing to their architectures and percentages. Fig. 1 shows our
approach, end to end, split into three modules: 1) initial dis-
covery; 2) command extraction; and 3) detection. Our data
collection is represented in the first two modules. In the fol-
lowing, we outline the steps we have taken in order to obtain
the shell commands from the malware samples (binaries).

In the initial discovery module, we disassemble the mal-
ware binaries. To create a set of rules that automatically apply

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

2490 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

TABLE I
MALWARE DATA SET BY ARCHITECTURE. PERCENTAGE IS

OUT OF THE TOTAL SAMPLES

to samples for retrieving the relevant commands, we manu-
ally examine all shell commands extracted from the strings
of 18 malware samples and establish patterns of those com-
mands. We then use them to automate the extraction of shell
commands for the rest of the malware samples.

The second component in our workflow is a command
extraction module, which takes the command patterns obtained
in the initial discovery phase and applies those patterns to the
strings of each sample. As a result, we extract the shell com-
mands from the malicious binary samples by concentrating on
the strings only, and label them as malicious.

Commands Extraction: Using Radare2, an open-source
static analysis tool with an API for automation, we first disas-
semble each malware binary in our 2891 samples and extract
the strings from the disassembled code. We then use the strings
appearing in each sample to obtain the shell commands in
them, creating our malicious commands. For coverage, we
gather all strings from the disassembled code. For a faster
extraction of the shell commands, we calculate the offset or
memory address where the string is referenced in the disas-
sembled code, and then conduct the disassembly from that
offset. We pull the instruction set at the offset and extract the
desired command. Before automating the command extraction,
we manually analyze the 18 samples to observe patterns that
could uniquely identify the shell commands.

From these 18 malware samples, we identify 1273 patterns
and use them to extract the shell commands from other sam-
ples. Our definition of shell commands covers the tasks that
can be instructed using a terminal, such as the Linux/Unix-
like system commands, HTTP messages, and automated tasks.
For example, strings beginning with shell command keywords,
such as cd, between if and fi, kill, wait, disown, suspend, fc,
history, break, GET, and POST, among other similar command
structures, are extracted. Malware samples use the shell com-
mands to achieve their objectives, such as traversing directories
(cd), killing a running process of interest (kill), communicating
with a C2 (GET and TFTP), and exfiltrating data (POST). For
coverage of those patterns, we use online resources to build a
data set of the keywords of shell commands to augment our
automation process.

Based on the identified patterns, we use regular expressions
to search for the specific patterns in the strings obtained from
the malware to automate the process for all malware sam-
ples. Although the commands contained in the strings may not
be syntactically correct, e.g., spaces are masked with special

characters or spaces. They, however, hint at the location of
shell command references. We then navigate to the address
where a particular string is quoted and disassemble at that
offset.

B. Benign Data Set and Commands Extraction

To evaluate ShellCore, acquiring a benign shell commands
data set is a necessary step, although a challenging task for
multiple reasons. For example, while Linux-based applications
are ubiquitous, extracting the corresponding shell commands
and using them as a baseline for our benign data set might be
only partially representative since these binaries may not be
necessarily intended for embedded devices.

Another approach to collect benign shell commands is by
observing shell access and their usage by benign users, which
requires monitoring network traffic to “sniff” the shell com-
mands by benign users. However, we notice that a majority of
the traffic nowadays is carried over HTTPS, and the encryption
limits our visibility into those benign shell commands.

To cope with these shortcomings, we rely on volunteers for
providing their usage of shell commands as a representative
of benign usage. In order to do so, we conduct collection
efforts at both the host and network levels. At the host side,
we gather the bash history data from nine volunteer users.
To protect the users’ privacy, we anonymize their identities by
manually observing the commands and removing every clearly
identifying information, such as usernames, domain names,
and IP addresses, consistently. In total, we collect a data set
of about 143 MB from these volunteers, consisting of 5772
commands. The collected commands correspond to services,
such as ssh, git, apt, Makefile, and curl, among others, and
generic Linux commands, such as cd, rm, chmod, cp, and
find, among others.

For the network-side profiling, we rely on high-level
network traffic monitoring from two networks to obtain
network-level artifacts (e.g., GET, POST, etc.) that are not part
of an encrypted payload. In particular, we look for commands
coming from various Linux-based tools, frameworks, and soft-
ware inject. Since an entry point for many malware families is
the abuse of many application-layer protocols, such as HTTP,
FTP, and TFTP, we attempt to monitor those intent to dis-
tribute malicious payloads and scripts protocols in benign use
setup for benign data collection. As such, we built our benign
command collection framework with two separate networks,
as highlighted in Fig. 2.

The first network is hidden behind a NAT and consists of
five stations, while the second network is a home network
with 11 open ports: 21, 22, 80, 443, 12174, 1900, 3282, 3306,
3971, 5900, and 9040. The primary purpose of this setup is
to capture the incoming and outgoing packets from the home
network. Our home network in this experimental setup con-
sists of two 64-bit Linux devices, one Amazon Alexa, one
iPhone device, one Mac device with a voice assistant, Siri,
which is continuously used, and a router. Fig. 2 is a high-
level illustration of our benign data collection system. In the
first network (right), we have five devices that are used in a lab
setting under “normal execution,” i.e., for everyday use. The

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

ALASMARY et al.: SHELLCORE: AUTOMATING MALICIOUS IoT SOFTWARE DETECTION USING SHELL COMMANDS REPRESENTATION 2491

Fig. 2. Monitoring stations for creation of benign data set creation. Two
network implementations are used: 1) NAT and 2) a home network.

network is monitored for 24 h, where all the network traffics
are captured.

The second network is a home network designed by select-
ing a variety of devices, also operating under normal execution
with the exception that the configured voice assistants in the
second network are actively queried during the monitoring
time. To establish a baseline, the network is monitored with-
out the devices and as the devices are added gradually to the
network. For the voice assistants, we iterate over a set of ques-
tions requiring access to the Internet and actively monitor the
traffic at the router for 7 h. Using these settings, we gather a
data set of approximately 34 GB from the first network and
approximately 1 GB from the second network.

The traffic gathered from the five volunteers (with con-
sent) in the first network (Network 1) results in 28 578 754
individual payloads, and only 1 625 143 are not encrypted,
which we utilize for our benign data set. From the second
network (Network 2), five sources generate 4735 unencrypted
payloads in total, which we use as part of our data set. In total,
our benign data set consists of three parts: 1) bash (5772 com-
mands); 2) network 1 (1 625 143 commands); and 3) network 2
(4755 commands).

Table II shows samples of the payloads from the four data
sources. We analyze the samples to find the architecture for
which they are compiled using the Linux File command. In the
data representation, we first consider a corpus compiled from
both the malware and benign commands to extract the vector
representation of each sample. However, determining what is
benign is an open challenge, particularly, in malware detection
using machine learning, where benign is assumed not to have
a fixed pattern, while the malicious samples share behavioral
patterns. Toward this, we also investigate using malware-only
commands corpus in the process of extracting the vector rep-
resentation of the samples. This will reduce the bias toward
the benign data set and demonstrate the effectiveness of the
proposed approach, as the feature representation is generated
solely using the malware samples, and is only reflected on the
benign samples.

C. Evaluation Settings and Metrics

To evaluate ShellCore, we use the data set highlighted
in IV-A and IV-B. In the following, we review settings, param-
eters tuning, validation technique, and evaluation metrics.

1) Data Set: Table III shows the number of commands as
well as the commands’ length statistics (maximum, minimum,
average, median, and standard deviation). We notice that com-
mands in Network 1 have similar lengths, as indicated with

the low deviation. We notice that Network 2 (corresponding to
the IoT devices setting) and Malware data sets have the clos-
est lengths overall, per their distributions’ average and standard
deviation characteristics.

2) Parameters Tuning: For a better features representation,
we utilize n-grams. Particularly, we use 1- to 5-grams. For
the DNN-based classifier, we also try multiple combinations
of parameters to tune the classifier for better performance. We
achieve the best performance using five hidden layers.

3) K-Fold Cross-Validation: To generalize the evaluation,
cross-validation is used. For K-fold cross-validation, the data
are sampled into K subsets, where the model is trained on
one of the K subsets and tested on the other K-1 subsets. The
process is then repeated, allowing each subset to be the testing
data while the remaining nine are used for training the model.
The performance results are then taken as the average of all
runs. In this work, we use 10 for K.

4) Evaluation Metrics: For a class Ci, (where i ∈ {0, 1}),
false positive (FP), false negative (FN), true positive (TP), and
true negative (TN) are defined as follows.

1) TP of Ci is all Ci instances classified correctly.
2) TN of Ci is all non-Ci not classified as Ci.
3) FP of Ci is all non-Ci instances classified as Ci.
4) FN of Ci is all Ci instances not classified as Ci.
We used the accuracy (AC), F-score (F-1), false-negative

rate (FNR), and false-positive rate as evaluation metrics, which
are defined as follows.

1) AC = (TP + TN)/(TP + TN + FP + FN).
2) F-1 = 2TP/(2TP + FP + FN).
3) FNR = FN/(TP + FN).
4) and FPR = FP/(FP + TN).

We report the metrics as mean AC, mean FNR, and mean FPR
for the tenfolds.

D. Detecting Malicious Commands

We use ShellCore to detect individual malware commands.
We first present the results of the term-level model, followed
by the character-level model. On average, the term-level model
provides an accuracy of more than 99% along with an FNR
of less than 0.1% and FPR of less than 0.20% as shown in
Table IV (left), with all approaches performing similarly. We
then test the performance of the character-level NLP-based
model for detecting individual malicious commands over the
same data set. As shown in Table IV (left), the approach
achieved similar results on the term level, with up to 99.87%
accuracy using LR and DNN.

Malware-Based Corpus: Next, we investigate the
performance of both term- and character-level represen-
tations extracted using the malware samples only, and
without considering the benign samples. Benign software
are diverse in behavior, intuition, appearance, and goal,
while malicious software share commonalities within their
design [17]. Therefore, identifying benign samples should
not be dependent on the existence of “benign” patterns,
but the nonexistence of “malicious” patterns. This, in turn,
will reduce the bias toward the training benign data set,
which is essential considering that obtaining a representative

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

2492 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

TABLE II
DATA SOURCES IN OUR DATA SET. “SOURCES” IS THE NUMBER OF FILES USED TO EXTRACT COMMANDS, WHILE “COMMANDS”

IS THE TOTAL NUMBER OF COMMANDS OBTAINED FROM THE SOURCE FILES

TABLE III
SIZE CHARACTERISTICS OF THE DIFFERENT DATA SETS. LEN. STANDS FOR LENGTH

TABLE IV
EVALUATION RESULTS (%) OF MALICIOUS COMMANDS DETECTION FOR BOTH TERM- AND CHARACTER-LEVEL REPRESENTATIONS. LEFT: THE

VECTOR REPRESENTATION IS GENERATED FROM COMMANDS EXTRACTED FROM BOTH BENIGN AND MALWARE. RIGHT: ONLY THE MALWARE

COMMANDS ARE USED TO GENERATE THE VECTOR REPRESENTATION

benign data set is an open challenge. Therefore, the benign
samples were excluded from the process of constructing
the feature space for this evaluation. Table IV (right) shows
the performance of both representations. In contrast to the
previous results, the term-level representation performance
was significantly affected (∼89.52% accuracy), while the
character-level representation maintains a performance of up
to 98.24% (only 1.6% performance degradation) using the
DNN-based model.

E. Malware Detection

To generalize from the shell command detection to binaries
(malware) detection, we classify files as malicious or benign
using vectors of feature per file that combine the feature values
of the shell commands associated with each file.

1) Data Set: For this task, we generate benign samples,
drawn from benign commands randomly selected to follow
similar command-frequency distribution as the malicious sam-
ples. We first generate the command-frequency distribution,
i.e., defined the distribution of the number of commands
per sample, of the real-world malicious samples in our data
set. Then, by using the sampling techniques, we generate a

statistically similar (sizewise) data set of benign samples that
fall in the same size as the malicious samples.

2) Model Training and Detection Performance:
Subsequently, we train and test the model over the file-specific
data set. In doing so, the commands corresponding to a file
are represented as a feature vector of that file. Similar to the
detection of the individual command, as shown in Table IV
(left), we evaluated both the term-level and character-level rep-
resentations, with the character-level model yielding a higher
detection rate of 99.91% with 0.14% and 0.07% of FNR
and FPR, respectively. Compared to the term-level model, the
character-level model performs better and improves the accu-
racy by ≈2% and also reduces the FPR and FNR. This reflects
the improved feature representation technique and emphasizes
the importance of special characters.

Malware-Based Corpus: We also investigate the
performance of malware-only term- and character-level
representations for malicious files and commands detection.
Table IV (right) shows the performance of both representa-
tions. Like the malware command detection, the term-level
approach performance is highly affected, reduced from 99%
to 67% accuracy. However, the character-level approach
maintained similar results (i.e., 1% performance reduction
in malware command detection). This indicates the stability

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

ALASMARY et al.: SHELLCORE: AUTOMATING MALICIOUS IoT SOFTWARE DETECTION USING SHELL COMMANDS REPRESENTATION 2493

of the character-level representations in malicious behavior
modeling, a characteristic that may not hold true for the
term-level representation.

V. DISCUSSION

Prior works have used different approaches for IoT malware
detection, including control flow graphs (CFGs) and image-
based representation of binaries. Studies have also shown that
Linux-based malware is structurally different from the tradi-
tional Android malware [18]. Furthermore, although studies
have shown the abuse of the windows Powershell [19], they
differ functionally from the Linux shell. Considering the use
of shell by the adversaries toward their intent [20], we argue
that shell commands can be used as a modality for effective
detection as well. Additionally, a shell command-based modal-
ity can be used to detect fileless malware. We further discuss
the implications of this work in the following.

A. Use of Shell as Weapon

The shell abstracts details of the communication between
the application and the OS, and is used by applications for
interacting with the file system, OS, etc. However, adversaries
use shell commands for their malicious intents, e.g., interacting
with the command and control server, directory traversal, and
data exfiltration. This can be facilitated by using default cre-
dentials by the owners and vulnerabilities in the services,
such as SSH and device firmware. The vulnerabilities in the
firmware could be due to the usage of outdated firmware or
due to delayed upgrading of firmware or services. For exam-
ple, in 2014, Shellshock bash attacks caused a vulnerability in
Apache systems through HTTP requests and using the wget
command to download a file from a remote host and save it
to the tmp directory to cause infection [21].

A recent vulnerability (CVE-2019-1656), which results
from the improper input validation in Linux OS and can be
exploited by the adversaries by sending crafted commands to
gain access to targeted devices, has been reported [7]. By abus-
ing the shell, adversaries can utilize the shell to brute-force
users’ credentials to gain access to the device by launching a
dictionary attack. Additionally, they can use the shell to con-
nect to C2 servers to download instructions; e.g., infecting the
device, propagating itself, or launching a series of directed
flooding attacks. Moreover, malware can use bash to find com-
mand to look for uninfected files in the host device and use
the tmp directory to download and run malware.

B. Detecting Individual Shell Commands

Although researchers have looked into the malicious usage
of Windows PowerShell, and except for analyzing the vulnera-
bilities in Linux shell (e.g., shellshock), the malicious usage of
shell commands has not been analyzed in the past. Prior works
have analyzed and detected the use of shell commands to prop-
agate attacks, e.g., sending malicious bots [22], and installing
ELF executables on Android systems [23]. Given the larger
ecosystem of connected embedded devices with Linux capa-
bilities and sensing the urgency, we analyze the usage of shell

commands used by malware. We propose a system to detect
malicious commands with 99.8% accuracy.

C. Malware Detection

Many efforts have been dedicated to addressing IoT’s secu-
rity threats from the hardware, software, and application
perspectives. Some also argue that there is a need for a
cross-layer approach for comprehensive protection of the IoT
systems [24]. Meanwhile, IoT malware has been on the rise.
Given the difficulty of obtaining samples, very few works have
been done to detect IoT malware, and even less using resid-
ual strings in the binaries. Section VI discusses the methods
that work on detecting IoT malware. In this work, we use the
commands in the malware samples for detecting them. Our
detection model achieves an accuracy of 99.8% with FNR and
FPR of 0.2% and 0.1%, respectively. As malware abuses the
host device’s shell, detecting them at the shell will help safe-
guard the device from becoming infected. Additionally, the
malware accesses a device by breaking into the host device by
launching a dictionary attack, typically a single shell command
execution. Alternatively, a host device can also be infected by a
zero-day vulnerability or an outdated device with an existing
exploitable vulnerability, among others, which are also exe-
cuted by individual shell commands. For a successful event,
where the adversary breaks into a host, it will then abuse the
shell to infect the host, followed by propagating the malware,
and creating a network of botnets to launch attacks. As such,
having a detector of such high accuracy, at both the individual
command level and malware sample level, with low FPR and
FNR, will help stop the host device from being used as an
intermediary target for launching attacks, despite the presence
of vulnerabilities or the host. This makes this work very timely
and necessary.

D. Applications

ShellCore detects malicious software by leveraging the use
of the shell in binaries. Given the increase in IoT malware
attacks, their use of shell commands can be leveraged for their
detection and the associated malware intent unveiled by the
commands. Additionally, ShellCore can be leveraged to detect
fileless attacks [25], a new and emerging type of attack where
the adversary uses a target device’s terminal to execute suc-
cessive commands that implement the malicious intent. As a
file is unavailable for analysis, the execution of commands can
be used as a modality toward their analysis and detection.

E. Limitations

In this study, we analyze the IoT malware statically to
extract shell commands from the malware disassembly. Thus,
our approach is limited to malware that does not employ
obfuscation. Prior studies have shown that obfuscation is still
uncommon among IoT malware [26], making our model appli-
cable under existing circumstances. Additionally, prior studies
have also shown the use of standard packers by IoT malware,
e.g., UPX [26], [27]. The standard packers’ unpack module
can, thus, be leveraged to extract the malware binary, and our
model can then be used to detect the malicious software.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

2494 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

TABLE V
COMPARISON WITH RELATED WORK. AUC: AREA UNDER THE CURVE, TPR: TP RATE, TNR: TN RATE, AC: ACCURACY, FNR: FN RATE, FPR: FP

RATE, NLP: NATURAL LANGUAGE PROCESSING, CNN: CONVOLUTIONAL NEURAL NETWORKS, MS: MALWARE SIGNATURE, MF: MALWARE

FUNCTIONS, LW: LONGEST WORD IN FILES HEADER, DL: DEEP LEARNING, MLP: MULTILAYER PERCEPTRON, SVM: SUPPORT VECTOR MACHINE,
GBT: GRADIENT BOOSTED TREE, LSTM: LONG SHORT-TERM MEMORY, SDA: STATIC AND DYNAMIC ANALYSIS, PR.: PRECISION, RE.: RECALL, AND

F1: F1-SCORE. NOTE THAT OUR SYSTEM IS CAPABLE OF CLASSIFYING BOTH SHELL COMMANDS AND HOSTING MALWARE. *THE LAST ROW

DEMONSTRATES THE RESULTS OF OUR SYSTEM IN CLASSIFYING MALWARE SAMPLES USING THEIR SHELL COMMANDS

A significant challenge in our study is generating a reli-
able data set of both malware and benign samples. While we
reconstruct the command usage by malware through extract-
ing commands from the malware codebase, we extract the
benign usage from the shell by the Linux-based devices. We
acknowledge that the benign data set might not be considered
as a representative ground-truth benign data set with absolute
confidence, considering that the different variants and flavors
of Linux/Unix-like OSs present the complexity of encompass-
ing all supported commands in such systems. Therefore, and
to account for that shortcoming, we evaluated our models
using representations extracted exclusively from the malware
samples.

VI. RELATED WORK

A summary of the related work is in Table V. Broadly, there
have been some work on PowerShell and Web Shell commands
detection and IoT malware detection, which are related to this
work. No prior work exists on IoT shell commands.

A. Shell Commands

Hendler et al. [19] detected malicious PowerShell com-
mands using several machine learning approaches, e.g., NLP
and conventional neural network (CNN). Both studies have
focused on shell commands that can only run on Microsoft
Windows, i.e., handling binaries of a single architecture,
with very little insight of whether the approach can be
applied to IoT software and command artifacts. Additionally,
Uitto et al. [10] proposed a command diversification technique,
by modifying and extending commands, to protect against
injection attacks. Furthermore, Anwar et al. [20] statically
analyzed the IoT malware and specified about the presence
of shell commands in their disassembly. They use them along
with other features, such as strings and CFGs toward malware
detection.

B. Web Shell

Web shell is a script that allows an adversary to run
on a targeted Web server remotely as an administrator.
Starov et al. [28] statically and dynamically analyzed a set

of Web shells to uncover features of malicious hypertext pre-
processor shells. Tian et al. [29] proposed a system to detect
malicious Web shell commands using CNN and word2vec-
based approaches. In a similar context, Rusak et al. [30]
proposed a deep learning approach to classify malicious
PowerShell by families using the abstract syntax trees repre-
sentation of the PowerShell commands. Li et al. [31] proposed
an ML model to detect malicious Web shells written in PHP,
achieving an accuracy of 91.7%. Moreover, Stokes et al. [32]
employed a recurrent deep learning model to detect mali-
cious VBScripts by using a data set of first 1000 bytes of
240 504 VBScript files and achieving a TPR of 69.3% and an
FPR of 1.0%.

C. IoT Malware Detection

IoT malware has been on the rise and has received the atten-
tion of researchers, which is evident by the growing body
of work in this domain. Pa et al. [15] proposed IoTPOT, a
detection system that supports different malware architectures
to analyze and detect Telnet-based attacks on IoT devices.
Dang et al. [33] deployed four IoT honeypots to study the
recent fileless attacks launched by Linux-based IoT devices;
these attacks do not rely on the malware files and leave no
footprint. They found that 99.7% of fileless attacks use shell
commands, making ShellCore very relevant, since it is capable
of detecting these types of attacks. Another work proposed by
Perdisci et al. [34] introduced IoTFinder, a multilabel classi-
fier that automatically learns statistical DNS traffic fingerprints
for large-scale detection of IoT devices. Alrawi et al. [35]
proposed a modeling methodology for home IoT devices to
identify unencrypted traffic and other vulnerability.

Recent works have focused on detecting IoT malware traf-
fic, e.g., IoT network packets [36], [37], by introducing
early detection of IoT malware network activity (EDIMA).
EDIMA is an IoT malware detection method using supervised
ML algorithms atop the analyzed traffic of IoT devices and
large-scale network scanning. Bendiab et al. [38] proposed
a zero-day malware detection and classification method using
deep learning atop the analyzed IoT malware traffic and visual
representations. The challenge of finding the best suitable algo-
rithm to use in extracting features from executable files was

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

ALASMARY et al.: SHELLCORE: AUTOMATING MALICIOUS IoT SOFTWARE DETECTION USING SHELL COMMANDS REPRESENTATION 2495

addressed by Darabian et al. [39] using multiview data extrac-
tion. Another approach proposed by Liu et al. [40] used a
pretrained RF that considers the values of misclassification
features to build a generic algorithm. Their proposed frame-
work’s primary goal is to detect IoT malware on the Android
OS with prior knowledge about the devices.

Su et al. [41] used a lightweight CNN for IoT’s mal-
ware families classification after converting their binaries to
grayscale images and achieved 94.0% of accuracy in classi-
fying DDoS malware in IoT networks and 81.8% of accuracy
in detecting two prominent malware families (i.e., Mirai and
Linux Gafgyt). Lei et al. [42] introduced a graph-based IoT
malware detection technique called “EveDroid” as an event-
aware Android malware detection tool. Instead of using the
API calls to capture malware behavior, EveDroid uses event
groups to exploit the apps’ behavioral patterns at a higher level
while providing an F1-score of 99%. In the health-care domain
of IoT, Guerar et al. [43] discussed malware vulnerabilities of
mobile OSs and IoT sensors. They introduced the Invisible
CAPTCHA to decide if a user is a bot or not by considering
the tap and vibration events from the user recorded behaviors
while using the mobile devices rather than asking the user to
enter the CAPTCHA content manually.

Bertino and Islam [44] proposed a behavior-based approach
that combines behavioral artifacts and external threat indica-
tors for malware detection. The approach, however, relies on
external online threat intelligence feeds (e.g., VirusTotal) and
cannot be generalized to other than home network environ-
ments (due to computations offloading). On the other hand,
Hossain et al. [45] proposed Probe-IoT, a forensic system
that investigates IoT-related malicious activities. Similarly,
Montella et al. [46] proposed a cloud-based data transfer pro-
tocol for IoT devices to secure the sensitive data transferred
among different applications, although not addressing the
insecurity of the IoT software itself. Cozzi et al. [47] analyzed
a large Linux malware data set by studying their behavior,
and discussed obfuscation techniques that malware authors
use. Furthermore, Alasmary et al. [48] and Anwar et al. [20]
used the different artifacts of the IoT malware, such as, CFGs,
strings, and functions, to build detection systems. Taking this
forward, Abusnaina et al. examined the robustness of CFG-
based IoT malware detection models to adversarial attacks [49]
and also proposed effective defenses [50]. Recent arts have
also focused on exploring the IoT network environment.
Choi et al. [51] explored the presence of endpoints the disas-
sembly of the IoT malware binaries toward characterizing IoT
malware spread and affinities. This emphasis on the network
has also enabled the monitoring and detection of anomalies
and vulnerabilities in wireless communication and network
traffics [52]–[54].

VII. CONCLUSION

We proposed ShellCore, a machine learning-based approach
to detect shell commands used in IoT malware. We analyzed
malicious shell commands from a data set of 2891 IoT mal-
ware samples, along with a data set of benign shell commands
assembled corresponding to benign applications. ShellCore

leverages deep learning-based algorithms to detect malicious
commands and files and NLP-based approaches for feature
creation. ShellCore detects individual malicious commands
and malware with an accuracy of more than 99%, with low
FPR and FNR, when detecting malware. The results reflect
that despite a comparatively low detection rate for individual
commands, the proposed model can detect their source with
high accuracy.

REFERENCES

[1] Google. (2017). Nest Cam IQ Indoor: State-of-the-Art Smart. [Online].
Available: https://tinyurl.com/yatod9zp

[2] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “CSPOT:
Portable, multi-scale functions-as-a-service for IoT,” in Proc. 4th
ACM/IEEE Symp. Edge Comput., 2019, pp. 236–249.

[3] S. Y. Jang, Y. Lee, B. Shin, and D. Lee, “Application-aware IoT camera
virtualization for video analytics edge computing,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Seattle, WA, USA, 2018, pp. 132–144.

[4] L. H. Newman. (2018). Github Survived the Biggest DDoS Attack Ever
Recorded. [Online]. Available: https://www.wired.com/story/github-
ddos-memcached/

[5] KrebsOnSecurity. (2016). Hacked Cameras, DVRs Powered Today’s
Massive Internet Outage. [Online]. Available: https://tinyurl.com/
zxrfm36

[6] N. Wells, “BusyBox: A Swiss army knife for Linux,” Linux J., vol. 2000,
no. 78, p. 10, 2000.

[7] NVD. (2018). NVD Vulnerability Metrics. [Online]. Available:
https://nvd.nist.gov/vuln-metrics/cvss

[8] Developers. (2010). CVE-2010-4258: Turning Denial-of-Service into
Privilege Escalation. [Online]. Available: https://tinyurl.com/y8ex6ltj

[9] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek,
“Linux kernel vulnerabilities: State-of-the-art defenses and open prob-
lems,” in Proc. Asia–Pac. Workshop Syst. (APSys), 2011, pp. 1–5.

[10] J. Uitto, S. Rauti, J. Mäkelä, and V. Leppänen, “Preventing malicious
attacks by diversifying Linux shell commands,” in Proc. 14th Symp.
Program. Lang. Softw. Tools (SPLST), 2015, pp. 206–220.

[11] J. C. Matherly, “SHODAN, the computer search engine,”
Accessed: Jun. 5, 2021. [Online]. Available: https://www.shodan.io/

[12] M. Antonakakis et al., “Understanding the Mirai Botnet,” in Proc.
26th USENIX Security Symp., Vancouver, BC, Canada, Aug. 2017,
pp. 1093–1110.

[13] L. H. Chiang, E. L. Russell, and R. Braatz, Fault Detection and
Diagnosis in Industrial Systems, vol. 12. London, U.K.: Springer, 2001.

[14] H. Uğuz, “A two-stage feature selection method for text categorization
by using information gain, principal component analysis and genetic
algorithm,” Knowl. Based Syst., vol. 24, no. 7, pp. 1024–1032, 2011.

[15] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” J. Inf. Process., vol. 24, no. 3, pp. 522–533, 2016.

[16] IoTPOT. (2021). IoTPOT—Analysing the Rise of IoT Compromises.
[Online]. Available: https://ipsr.ynu.ac.jp/iot/

[17] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of
machine learning,” Mach. Learn., vol. 81, no. 2, pp. 121–148, 2010.

[18] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen,
“Graph-based comparison of IoT and android malware,” in Proc. 7th
Int. Conf. Comput. Data Social Netw. (CSoNet), 2018, pp. 259–272.

[19] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious PowerShell
commands using deep neural networks,” in Proc. Asia Conf.
Comput. Commun. Security (AsiaCCS), Incheon, South Korea, 2018,
pp. 187–197.

[20] A. Anwar, H. Alasmary, J. Park, A. Wang, S. Chen, and D. Mohaisen,
“Statically dissecting Internet of Things malware: Analysis, characteri-
zation, and detection,” in Proc. Int. Conf. Inf. Commun. Security (ICICS),
2020, pp. 443–461.

[21] M. Koch, An Introduction to Linux-Based Malware, SANS Inst. InfoSec
Reading Room, Rockville, MD, USA, 2015.

[22] D. Geer, “Malicious bots threaten network security,” IEEE Comput.,
vol. 38, no. 1, pp. 18–20, Jan. 2005.

[23] A.-D. Schmidt et al., “Enhancing security of Linux-based android
devices,” in Proc. 15th Int. Linux Kongress, 2008, pp. 1–16.

[24] A. Wang, A. Mohaisen, and S. Chen, “XLF: A cross-layer framework
to secure the Internet of Things (IoT),” in Proc. IEEE 39th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Dallas, TX, USA, 2019, pp. 1830–1839.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

2496 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 4, FEBRUARY 15, 2022

[25] S. Mansfield-Devine, “Fileless attacks: Compromising targets without
malware,” Netw. Security, vol. 2017, no. 4, pp. 7–11, 2017.

[26] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and
D. Balzarotti, “The tangled genealogy of IoT malware,” in Proc. Annu.
Comput. Security Appl. Conf., 2020, pp. 1–16.

[27] UPX: The Ultimate Packer for eXecutables. Accessed: Jan. 23, 2021.
[Online]. Available: https://upx.github.io/

[28] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis, “No
honor among thieves: A large-scale analysis of malicious Web shells,”
in Proc. 25th Int. Conf. World Wide Web (WWW), 2016, pp. 1021–1032.

[29] Y. Tian, J. Wang, Z. Zhou, and S. Zhou, “CNN-webshell: Malicious
Web shell detection with convolutional neural network,” in Proc. VI Int.
Conf. Netw. Commun. Comput. (ICNCC), 2017, pp. 75–79.

[30] G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “AST-based deep learning
for detecting malicious powershell,” in Proc. Conf. Comput. Commun.
Security (CCS), 2018, pp. 2276–2278.

[31] Y. Li, J. Huang, A. Ikusan, M. Mitchell, J. Zhang, and R. Dai,
“ShellBreaker: Automatically detecting PHP-based malicious Web
shells,” Comput. Security, vol. 87, 2019, Art. no. 101595.

[32] J. W. Stokes, R. Agrawal, and G. McDonald, “Detection of malicious
Vbscript using static and dynamic analysis with recurrent deep learn-
ing,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP),
Barcelona, Spain, 2020, pp. 2887–2891.

[33] F. Dang et al., “Understanding fileless attacks on Linux-based IoT
devices with honeycloud,” in Proc. 17th Annu. Int. Conf. Mobile Syst.
Appl. Serv. (MobiSys), 2019, pp. 482–493.

[34] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis,
“IoTFinder: Efficient large-scale identification of IoT devices via pas-
sive DNS traffic analysis,” in Proc. IEEE Eur. Symp. Security Privacy
(EuroS&P), Genoa, Italy, Sep. 2020, pp. 474–489.

[35] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK:
Security evaluation of home-based IoT deployments,” in Proc. IEEE
Symp. Security Privacy (SP), San Francisco, CA, USA, May 2019,
pp. 1362–1380.

[36] C. D. McDermott, F. Majdani, and A. V. Petrovski, “BotNet detection
in the Internet of Things using deep learning approaches,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Rio de Janeiro, Brazil, 2018, pp. 1–8.

[37] A. Kumar and T. J. Lim, “EDIMA: Early detection of IoT mal-
ware network activity using machine learning techniques,” in Proc. 5th
IEEE World Forum Internet Things (WF-IoT), Limerick, Ireland, 2019,
pp. 289–294.

[38] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “IoT malware
network traffic classification using visual representation and deep learn-
ing,” in Proc. 6th IEEE Conf. Netw. Softw. (NetSoft), Ghent, Belgium,
2020, pp. 444–449.

[39] H. Darabian et al., “A multiview learning method for malware threat
hunting: Windows, IoT and android as case studies,” World Wide Web,
vol. 23, no. 2, pp. 1241–1260, 2020.

[40] X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, “Adversarial
samples on android malware detection systems for IoT systems,”
Sensors, vol. 19, no. 4, p. 974, 2019.

[41] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai,
“Lightweight classification of IoT malware based on image recognition,”
in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC),
vol. 2. Tokyo, Japan, 2018, pp. 664–669.

[42] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, “EveDroid: Event-aware
android malware detection against model degrading for IoT devices,”
IEEE Internet Things J., vol. 6, no. 4, pp. 6668–6680, Aug. 2019.

[43] M. Guerar, A. Merlo, M. Migliardi, and F. Palmieri, “Invisible
CAPPCHA: A usable mechanism to distinguish between malware and
humans on the mobile IoT,” Comput. Security, vol. 78, pp. 255–266,
Sep. 2018.

[44] E. Bertino and N. Islam, “Botnets and Internet of Things security,” IEEE
Comput., vol. 50, no. 2, pp. 76–79, Feb. 2017.

[45] M. Hossain, R. Hasan, and S. Zawoad, “Probe-IoT: A public digital
ledger based forensic investigation framework for IoT,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM), 2018, pp. 1–2.

[46] R. Montella, M. Ruggieri, and S. Kosta, “A fast, secure, reliable, and
resilient data transfer framework for pervasive IoT applications,” in Proc.
IEEE Conf. Comput. Commun. Workshops (INFOCOM), Honolulu, HI,
USA, 2018, pp. 710–715.

[47] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti,
“Understanding Linux malware,” in Proc. IEEE Symp. Security
Privacy (S&P), 2018, pp. 161–175.

[48] H. Alasmary et al., “Analyzing and detecting emerging Internet of
Things Malware: A graph-based approach,” IEEE Internet Things J.,
vol. 6, no. 5, pp. 8977–8988, Oct. 2019.

[49] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based IoT mal-
ware detection systems,” in Proc. 39th IEEE Int. Conf. Distrib. Comput.
Syst. (ICDCS), Dallas, TX, USA, 2019, pp. 1296–1305.

[50] H. Alasmary et al., “Soteria: Detecting adversarial examples in con-
trol flow graph-based malware classifier,” in Proc. 40th IEEE Int. Conf.
Distrib. Comput. Syst. (ICDCS), 2020, pp. 1296–1305.

[51] J. Choi et al., “Honor among thieves: Towards understanding the dynam-
ics and interdependencies in IoT botnets,” in Proc. IEEE Conf. Depend.
Secure Comput. (DSC), Hangzhou, China, 2019, pp. 1–8.

[52] Y. Jia, Y. Xiao, J. Yu, X. Cheng, Z. Liang, and Z. Wan, “A novel graph-
based mechanism for identifying traffic vulnerabilities in smart home
IoT,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Honolulu,
HI, USA, 2018, pp. 1493–1501.

[53] Y. Wan, K. Xu, G. Xue, and F. Wang, “IoTArgos: A multi-layer secu-
rity monitoring system for Internet-of-Things in smart homes,” in Proc.
39th IEEE Conf. Comput. Commun. (INFOCOM), Toronto, ON, Canada,
2020, pp. 874–883.

[54] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “IoTGaze:
IoT security enforcement via wireless context analysis,” in Proc. 39th
IEEE Conf. Comput. Commun. (INFOCOM), Toronto, ON, Canada,
2020, pp. 884–893.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:04:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

