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Abstract—Mobile devices and technologies have become
increasingly popular, offering comparable storage and compu-
tational capabilities to desktop computers allowing users to store
and interact with sensitive and private information. The secu-
rity and protection of such personal information are becoming
more and more important since mobile devices are vulnerable
to unauthorized access or theft. User authentication is a task of
paramount importance that grants access to legitimate users at
the point of entry and continuously through the usage session.
This task is made possible with today’s smartphones’ embedded
sensors that enable continuous and implicit user authentication
by capturing behavioral biometrics and traits. In this article,
we survey more than 140 recent behavioral biometric-based
approaches for continuous user authentication, including motion-
based methods (28 studies), gait-based methods (19 studies),
keystroke dynamics-based methods (20 studies), touch gesture-
based methods (29 studies), voice-based methods (16 studies), and
multimodal-based methods (34 studies). The survey provides an
overview of the current state-of-the-art approaches for contin-
uous user authentication using behavioral biometrics captured
by smartphones’ embedded sensors, including insights and open
challenges for adoption, usability, and performance.

Index Terms—Continuous authentication, mobile sensing,
sensor-based authentication, smartphone authentication.

I. INTRODUCTION

MARTPHONES have been witnessing a rapid increase

in storage and computational resources, making them an
invaluable instrument for activities on the Internet and a lead-
ing platform for users’ communication and interaction with
data and media of different forms. Moreover, the current edge
and cloud computing services available to users have increased
the reliance on mobile devices for mobility and convenience,
revolutionizing the landscape of technologies and methods
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of conducting transactions [1]. The continuous user authen-
tication is an implicit process of validating the legitimate
user based on capturing behavioral attributes by leveraging
resources and built-in sensors of the mobile device. Users
tend to develop distinctive behavioral patterns when using
mobile devices, which can be used for the authentication
task. These patterns are implicitly captured as users inter-
act with their devices using behavioral features calculated
from a stream of data, such as interaction and environmen-
tal information and sensory data. Continuous authentication
methods are also called “transparent, implicit, active, nonin-
trusive, nonobservable, adaptive, unobtrusive, and progressive”
techniques [2], [3]. Traditionally, continuous authentication
methods operate as a support process to the conventional
authentication methods, e.g., using secret-based authentica-
tion or physiological biometrics, such as prompting users to
reauthenticate when adversarial or unauthorized behavior is
detected.

Recently, the field of continuous authentication has been
gaining increasing interest, especially with the expansion of
storage and computational resources and the availability of
sensors that can make the implicit authentication very accu-
rate and effective. Using sensors-based authentication methods
offers convenient and efficient access control for users. This
article surveys recent and state-of-the-art methods for continu-
ous authentication using behavioral biometrics. We aim to shed
light on the current state and challenges facing the adoption
of such methods in today’s smartphones.

Conventional Versus Biometric Approaches: To date, ven-
dors of mobile devices have adopted both knowledge-based
schemes and physiological biometrics as the primary security
method for accessing the device. Knowledge-based approaches
rely on the knowledge of the user; i.e., the user must pro-
vide certain information, such as numeric password, PIN,
graphical sequence, or a picture gesture [4], to access a
device [5]. Despite their simplicity, ease of implementation,
and user acceptance, such approaches suffer from several
shortcomings, such as the inconvenience of frequent reen-
tering (especially when the knowledge used is long enough
to convey strong security) and several adversarial attacks
(e.g., shoulder surfing and smudge attacks) [6]-[10]. Another
issue with knowledge-based authentication is the underly-
ing assumption of having equal security requirements for all
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TABLE I
SUMMARY OF THE RELATED SURVEYS IN THE FIELD OF USER AUTHENTICATION, HIGHLIGHTING THE FEATURES FOR EACH WORK

Year  Refereces SDys}'em Pmat:l);o]b Traditional - Motion-based Gait-bggeq Dyrlliien};is(t:;?ll;;ed GestI?c:s(iEased Voice-bas efj Multiple )
esign . Methods Modalities Modalities o o Modalities Modalities
Security Modalities Modalities

[8] 2005 19 X v 4 X X X X X X
[24] 2011 72 v X X X X 4 X X X
[22] 2013 163 v v 4 X X 4 X X X
[23] 2013 56 X X 4 X X 4 X X X
[2] 2016 150 v v 4 X X X X X v
[26] 2016 33 X X v X X X X X X
[3] 2016 191 4 X v v v v v 4 v
[25] 2017 214 4 X X X X X X v X
[27] 2018 36 v v v X X X X X X
Ours 2020 187 v 4 4 v 4 v 4 4 4

applications [11]. For example, accessing financial records
and texting are given the same level of security. Using a
knowledge-based authentication on smartphones falls short on
delivering application-specific security guarantees [12], espe-
cially observing the recent emergence of adaptable biometric
authentication that account for environmental factors to adapt
and select the suitable sensors for authentication (e.g., using
fingerprint sensor when the lighting condition does not allow
for face recognition) [13]. Even when using more compli-
cated implementations of knowledge-based approaches, e.g.,
Yu et al’s [14] implementation of 3-D graphical passwords
that can be easier to remember and possibly providing larger
password space, they still inherit the same drawbacks. In fact,
in a study by Amin et al. [9], graphical sequences (2-D pat-
terns) are shown to be as easier to predict as textual passwords
since 40% of patterns begin from the top-left node and the
majority of users use five nodes out of the nine nodes. Another
example of sophisticated knowledge-based schemes is intro-
duced by Shin et al. [15], which includes changing the colors
of six circles by touching them repeatedly up to seven times.
Once all the circles’ colors fit the correct combination, user
authentication is granted. Even though this allows for harder
security (especially when enabling a larger number of circles
and colors), it still requires memorizing such complex combi-
nations, which is the main disadvantage in knowledge-based
approaches. To overcome the need for memorizing complex
combinations, Yang et al. [16] proposed free-form gestures
(doodling) as a user validation scheme, where users are to enter
any draw with any number of fingers. The authors showed that
using free-form gestures enabled a log-in time reduction that
reached 22% in comparison to textual passwords while main-
taining higher usability and search space. However, the authors
have not addressed other security concerns, such as shoulder
surfing and smudge attacks.

Many researchers have attempted to overcome the core
problems of knowledge-based authentication by coupling
such methods with biometric-based methods. Using biometric
information improves both the accuracy and usability of the
authentication process. Such integration can be done by mea-
suring the keystroke dynamics or gestures when connecting,
changing the order, or selecting images [17]. The shortcom-
ings of knowledge-based authentication approaches motivate
for using stronger and easier authentication schemes such as
biometrics. Physiological biometrics provide unquestionable

precision of user authentication with a convenient and sim-
ple approach. For example, most current smartphones are
equipped with a fingerprint recognition module as relia-
bility and a cost-effective method for user authentication
(31, [18], [19].

Physiological  biometrics-based  authentication  tech-
niques show high efficiency, accuracy, and user acceptance
[3], [12], [20]. However, all of these techniques necessitate
the user’s knowledge of the service since the user must inter-
act with the biometric sensor and be aware of the biometric
capturing process. Similar to knowledge-based authentication
schemes, physiological biometrics, e.g., face, fingerprint, peri-
ocular, and iris, can provide point-of-entry authentication and
fall short of offering implicit and transparent authentication.

Motivation: It is obvious that knowledge-based and phys-
iological biometric-based methods are successful for user
validation, but they fall short on delivering continuous and
transparent authentication. Moreover, physiological biomet-
rics are mostly hardware dependent. Behavioral biometrics
show higher potential to meet all requirements for an effi-
cient authentication system. In addition to all benefits of
adopting behavioral biometrics, they are a suitable solution
for “user abandonment” [21] protection, or when the legiti-
mate user of the unlocked device is not present. These many
advantages of behavioral biometrics-based authentication have
shown to be influential for user adoption since a survey by
Crawford and Renaud [10] demonstrated that 90% of the
study’s participants favored behavioral biometrics-based trans-
parent authentication. Hence, the literature shows a remarkable
interest in adopting various behavioral modalities, such as
keystroke dynamics, touch gestures, motion, voice, etc., for
transparent user authentication on mobile devices.

This article focuses on behavioral continuous authentication
and multimodal methods that may incorporate physiological
biometrics to harden security and boost the performance of the
authentication scheme. Table I shows a summary of features of
several surveys in the field of user authentication, highlighting
scope, and modalities. For readability, we list the abbreviations
used in this article in Table II.

Other Related Surveys: There are several surveys that
have addressed specific modalities, e.g., keystroke dynam-
ics [22]-[24], voice-based speaker identification [25], and
multimodal authentication [2]. Moreover, there are surveys that
address traditional biometric based, i.e., [8] and [26], general
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TABLE 11
LIST OF ABBREVIATIONS IN ALPHABETICAL ORDER

Term | Definition

Ac Accelerometer

ANN Artificial Neural Network

Ca Camera

CcC Cross-correlation

CI Confidence Interval

CNN Convolutional Neural Network

Co Compass

CPANN Counter Propagation Artificial Neural Network
CRM Cyclic Rotation Metric

DAE-SR | Deep Auto Encoder and Softmax Regression
DSP Digital Signal Processing

DTW Dynamic Time Wrapping

EEH Electromagnetic Energy Harvester

EER Equal Error Rate

El Elevation

Fast Approximate Nearest Neighbor
False Acceptance Rate

FC Fuzzy Commitment

FFT Fast Fourier Transform

FLD Fisher Linear Discriminant
FPOS Frequent Pattern Outlier Score
FRR False Rejection Rate

FSR Force Sensing Resistor

GA Genetic Algorithm

GMM Gaussian Mixed Model

GPS Global Positioning System
Gr Gravity sensor

Gy Gyroscope

HMM Hidden Markov Model

HWS Healthcare Wearable Sensors
I-F Isolation Forest

KL Kullback-Leibler

k-NN k-Nearest Neighbor

KRR Kernel Ridge Regression
LDA Linear Discriminant Analysis

Li Light sensor

Leap Motion Controller
Long Short Term Memory
Ma Magnetometer

MCF Multi-Classifier Fusion
MGGN Multivariate Gaussian Generative Model
MHD Modified Hausdorff Distance

Mi Microphone

Multilayer Perceptron

Cyclic Rotation Metric

Or Orientation

Principle Component Analysis
Piezoelectric Energy Harvester
Pr Pressure

PSO Particle Swarm Optimization

RBF Radial Basis Function

RBFN Radial Basis Function Network

RF Random Forest

SOM Self Organizing Maps

Sp Speaker

SRC Sparse Representation Classification
SVM Support Vector Machine

To Touch

VR Virtual Reality

authentication schemes, i.e., [2] and [3], and authentication
protocols and OS-related security [27]. This study provides a
contemporary survey for sensor-based continuous authentica-
tion on smartphones, differing in scope, time, and range of
surveyed works. Table I shows a summary of features of sev-
eral surveys in the field of user authentication, highlighting
scope, and modalities.

Contribution: This work contributes to the mobile continu-
ous user authentication in several aspects.

Continuous
Authentication

[
Behavioral Multimodal Physiological
Biometrics Authentication Biometrics -

B
Dynamics

User

Behavioral Proflllng Interaction and
Profiles \ F i
based
Information App P

Fig. 1.  Biometric-based authentication modalities are categorized into
physiological biometrics, behavioral biometrics, and user profiles.

1) Survey more than 140 works on continuous user authen-
tication methods, categorizing them into six behavioral
and physiological biometrics groups (motion, gait,
keystroke dynamics, gesture, voice, and multimodal).

2) Present the studies of each biometric modality in a table
format, comparing works by the modality, sensors, and
the used authentication algorithm, in addition to the data
collected, user sample size, and six evaluation metrics.
Such comparison provides ease in understanding each
work and how it compares to others in the field.

3) Give insights and challenges for different biometric
methods, highlighting the possible future work and
existing common gaps within the literature.

Organization: The remainder of this survey is organized

as follows. We discuss the system design of continuous user
authentication, including biometric modalities, user enroll-
ment, and verification techniques, and evaluation metrics
in Section II. The user authentication system is catego-
rized into six groups: motion-based authentication is dis-
cussed in Section III, gait-based authentication in Section IV,
and followed by keystroke dynamics-based authentication in
Section V. Touch gesture-based and voice-based authentica-
tion methods are described in Sections VI and VII, respec-
tively. The multimodal-based authentication is described in
Section VIII. Finally, we conclude in Section IX.

II. CONTINUOUS AUTHENTICATION: DESIGN

Numerous studies have explored various methods for con-
tinuous user authentication leveraging modern mobile tech-
nologies and embedded sensors to model users’ behavior. The
deployment of sensors on today’s mobile devices has enabled a
variety of applications, such as modeling human behavior [28],
[29], user authentication [30]-[34], activity and action recog-
nition [28], [35], [36], and healthcare monitoring [37], [38],
among others [39], [40]. In this article, we show recent user
authentication methods that use mobile sensory data to capture
users’ behavioral biometrics.

A. Used Biometric Modalities

Several modalities are used for biometric-based authentica-
tion, including physiological biometrics (e.g., face, fingerprint,
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Fig. 2. Behavioral biometrics are categorized into several modalities. The
combination of the modalities provides a multimodal user authentication.
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iris, etc.) and behavioral biometrics (e.g., keystroke dynamics,
touch gestures, voice, motions, etc.). Fig. 1 shows a cate-
gorization of used modalities for user authentication tasks.
Fig. 2 shows the modalities and features of several behavioral
biometrics that are commonly used for user authentication
tasks. All these modalities are made possible by the embedded
mobile sensors, e.g., camera, microphone, accelerometers, and
gyroscopes, which contribute to the enrolment phase and the
verification part of the authentication process. Such sensors
provide sufficient information for accurate and secure authen-
tication, and adopting the proper utilization mechanism would
play an essential role in delivering efficient and usable user
authentication [41]. Using biometrics for authentication, there
are enormous studies that demonstrated the benefits and secu-
rity aspects of using such information to explore “on-the-move
biometry” [42].

B. User Authentication

Biometric-based user authentication leverages users’ behav-
ioral patterns for the identification or/and validation task using
a pattern recognition method. The authentication is commonly
referred to as a verification task in mobile security since the
authentication method validates the legitimate user given cer-
tain biometrics. The general framework for the authentication
system is illustrated in Fig. 3.

Enrolment: There are two common approaches for user
enrollment in the user authentication system. For sim-
plicity purposes, we categorize enrollment techniques to:
1) template-based enrollment and 2) model-based enrollment.
For template-based enrollment, the user submits several sam-
ples to establish templates for future comparison. This method
is popular among authentication methods using physiological
biometrics, where features can be more robust to intraclass
variations and more distinctive and scalable for a large popula-
tion. Once users’ templates are established, a similarity-based
technique is used to validate users after passing a similarity
threshold. Many considerations should be taken to ensure the
quality of templates for supporting the performance of the
system, such as the robustness and distinguishability of fea-
tures across users, removing outliers, and reducing noise and
redundancy. Moreover, security concerns should be addressed
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to ensure the security and privacy of users’ templates, whether
during enrollment and template registration, storing, retriev-
ing, and processing for user authentication. For model-based
enrollment, users’ biometrics are collected for training a
machine learning model for user authentication, where the
authentication model decides whether the input data belong to
the legitimate user. The common machine learning approaches
are used to establish users’ models, including data acquisi-
tion and preprocessing, feature extraction and selection, and
modeling. The quality of features plays a significant role in the
performance of model-based authentication. Therefore, most
efficient methods include a feature evaluation and selection
process to extract the most distinctive features across a large
population. Recently, model-based approaches have been gain-
ing success for the user authentication task. However, several
challenges should be tackled for efficient adoption, such as
data collection size, training time, model size, and robustness
against possible adversarial attacks.

User Verification: After the user enrollment, the system val-
idates the legitimate user based on extracted features. The
verification can be at the point of entry and continuously
through the usage session. For continuous authentication, the
user verification process occurs periodically to grant access
to the legitimate user and to deny access to impostors. The
frequency of verification should be carefully selected to allow
sufficient biometric data acquisition and features extraction
process and to manage energy consumption. Depending on
the enrolment approach, the authentication algorithm follows
a similarity-based or probability-based scheme for user valida-
tion. The similarity-based techniques are used for measuring
the similarity of input data in comparison to a stored tem-
plate for a certain user. Traditionally, the verification implies
a match between a given data and a stored template to
a certain degree. The authentication system is responsible
for giving access to the legitimate user when presenting
a biometric data that matches the supposed template with
a similarity check higher than a predefined threshold. The
threshold is for accounting for environmental and processing
errors that could affect reading or calculating of the biometric
data. Mathematically, a verification process can be viewed as
C = True if f(x,y) > t and False otherwise, where f is a
similarity measurement between an input x and a template y,
and ¢ is a predefined threshold. The genuine match is shown
when C evaluates to True while the impostor match is when
C is False.

Probability-based algorithms are used for model-based
enrolment, where the authentication model signals a probabil-
ity for granting access to the legitimate user based on the input
data, the verification process is similar to the template-based
algorithm, except for using a pretrained model for decision
making. The decision of the model C = True if g(x) > th
and False otherwise, where g is the objective function of the
probability-based algorithm and ¢4 is a predefined threshold.
The user verification process runs periodically for continu-
ous user authentication, however, the frequency freq higher
bound is limited by minimum verification time t,, where
Jreq = (1/1,), and 1, = ty+1, +1., where 1, is the time needed
to acquire sufficient data for verification, f, refers to the time
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Fig. 3. General framework of the biometric-based authentication system. The framework includes two operations: 1) user enrollment and 2) user verification.
Both operations require data acquisition and feature extraction. User enrollment includes modeling of the extracted data and storing while user verification
feeds the extracted features to the authentication algorithm to grant access for legitimate users periodically.

required for data preprocessing, and 7. is classification period.
While 7. can be mitigated by overlapping #; and 7, with ¢,
it should be taken into account the computational power and
battery consumption needed for the verification process.

C. Authentication Evaluation Metrics

Biometric-based authentication systems are evaluated by
their ability to be generalized to a large population. This
emphasis becomes more obvious when addressing mobile
security since the authentication system should account for a
very large and different population. There are several evalua-
tion metrics for evaluating authentication system performance.
The three most common metrics are the false accept rate
(FAR), the false reject rate (FRR), and the equal error rate
(EER). For the authentication task on a mobile device, a false
accept indicates that false access is granted to an intruder
while a false reject indicates that the legitimate user is denied
access to the device. FAR is represented as (Number of False
Acceptance/Total Number of Attempts) and FRR is equal to
(Number of False Rejections/Total Number of Attempts). The
EER is where the FAR is roughly similar to FRR, and it is a
very popular metric for interpreting system error.

Additional evaluation metrics for the authentication system
include true positive rate, true negative rate, false positive rate,
false negative rate, accuracy, precision, recall, and Fl-score.
The true positive rate and true negative rate indicate the rate of
correctly validating a legitimate user and denying an impostor,
respectively. The false positive rate and false negative rate are
the rate of which the system denies access for the legitimate
user and allows access for the impostor, respectively. Accuracy
is the proportion of true positives and negatives to the overall
tested data, including true positives, true negatives, false pos-
itives, and false negatives. Precision indicates how frequently
the system correctly produces positive classifications, which is
calculated as the ratio of true positives to both true and false
positives. Recall indicates how frequently the system correctly
validates positive data, which is calculated as the ratio of true
positives to both true positives and false negatives.

D. Behavioral Biometrics and Smartphones’ Capabilities

Behavioral biometrics enable efficient implementation of
an authentication system that operates beyond the point-
of-entry access and continuously authenticate users without
explicitly asking their input. Therefore, behavioral biomet-
rics improve mobile security by providing user continuous
and transparent authentication process throughout the entire
routine session. Various techniques have been proposed for
mobile user authentication using behavioral usage and features
by taking advantage of the embedded sensors. Using sen-
sory data, a background process continuously and implicitly
captures user’s behavior to perform an active and transpar-
ent authentication, e.g., using motion patterns [28], [43]-[47],
gait [35], [48]-[52], touch gestures [43], [53]-[57], electrocar-
diography (ECG) [33], keystroke dynamics [19], [55], [58],
[59], voice [60]-[62], signature [63]-[65], and profiling [29],
[31], [66].

Since today’s smartphones are well equipped with a variety
of embedded sensors, such as motion sensors (e.g., gravity,
accelerometer, gyroscope, and magnetometer), environmental
sensors (e.g., light, temperature, barometer, and proximity),
and position sensors (e.g., GPS and compass), numerous stud-
ies have leveraged these sensors for user authentication [28],
[31], [67], [68]. A study by Crawford et al. [69] shows
that behavioral biometrics reduce the demand for legitimate
authentication by 67% in comparison to knowledge-based
methods, i.e., adding a remarkable improvement in usability.
In terms of exploiting access privilege, the authors showed
that an intruder could perform more than 1000 tasks if
successfully gain access to a mobile device using a knowledge-
based authentication scheme; however, the intruder can hardly
achieve one task if the mobile device uses a multimodal
behavioral biometrics-based method [69].

Smartphone Hardware and Software Capabilities: The rapid
advancements in mobile technologies have increased the
performance of smartphones by multiple folds in recent years.
The computational capabilities of mobile devices, includ-
ing multicore processors, GPUs, and Gigabytes of memory,
are comparable to those of normal-use desktop computers.
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Hardware acceleration units, which are available on most
smartphones’ chipset platforms, e.g., Qualcomm, HiSilicon,
MediaTek, and Samsung, have enabled smartphones to run
sophisticated applications that go far beyond the standard and
built-in phone functions. Moreover, today’s smartphones are
equipped with a variety of sensors, e.g., motion sensors, envi-
ronmental sensors, and position sensors, which can provide
accurate usage profiling for enhanced user experience. While
standard applications are no longer a challenge with such
capabilities, there are many performance requirements and
challenges related to adopting continuous behavioral-based
authentication on smartphones, especially when using machine
learning approaches. Such challenges include the following.

1) OS-Related Development Tools: The availability of such
tools to access and take advantage of the embedded pro-
cessing acceleration units plays a key role in developing
continuous authentication methods. Most the of surveyed
systems are implemented on Android-based platforms
for the ease of access to a variety of developing tools.
Studying the effects of the running OS system on obtain-
ing and analyzing behavioral biometrics for continuous
authentication is an interesting direction for future work
that is out of the scope of this study.

2) Machine Learning-Based Authentication: While the cur-
rent computational and memory power of smartphones
allow for model inference, the enrolment phase can
be a challenge and may require a server-side training
phase. Through our survey of behavioral-based continu-
ous authentication methods using different modalities,
we highlight insights and challenges to advance the
application of the addressed modality. We note that an
efficient implementation of behavioral biometric-based
authentication method should account for hardware-
and software-independent operation and network con-
nectivity differences to allow for successful system
adoption [84].

Built-in Methods: Most of the built-in authentication meth-
ods are intended for point-of-entry level, as continuous implicit
authentication is still evolving to meet a specific level of stan-
dards. To the best of our knowledge, and based on our survey,
there has not been any commercial offering of a dedicated
built-in continuous authentication method in customer-grade
smartphones, making the development of such methods a pos-
sible gap to fill with research and development. We note the
barrier to the mass production of built-in authentication capa-
bilities in smartphones is that they need to meet a high standard
of security (e.g., FAR of 0.01% in the European Union), which
is not met by the current technology. In our survey, we high-
light a variety of challenges that can be pursued to improve the
current methods to rise to this level of standards. As standards
are clearly outlined for point-of-entry authentication, there
is still a lack of guidelines for adopting continuous behav-
ioral biometrics as an integral component of the smartphone.
However, many of the covered methods are applicable as a
running application, given today’s devices’ resources, such as
sensors, multicore processors, and GPUs.
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III. MOTION-BASED AUTHENTICATION

Most of today’s mobile devices are equipped with motion
sensors, such as accelerometers and gyroscopes, which can be
a valid source for modeling users’ behavior. The accelerometer
provides the gravitational acceleration in three spatial dimen-
sions (axes), x, y, and z, measured in meter per second squared,
where the axes denote the vertical, and left-to-right dimen-
sions [85]. The gyroscope measures the angular rotation in
three dimensions, x, y, and z, in radians per second along
the axes [76]. Such sensory data provide a feature space that
enables modeling of users’ movement and usage; therefore,
a variety of methods revolve around utilizing such data for
authentication and security.

Early exploitation of motion sensors includes air-written sig-
natures [44], [77] for which the user holds the device and
performs an air-written signature as the application is running
and recording the user’s motion. Traditionally, signatures are
well-known behavioral biometric commonly used for conduct-
ing official or commercial transactions [86]-[88]. However,
air-written signatures, while providing a valid method for user
authentication, they operate as a point-of-entry authentication
and fail to offer covert, transparent, or continuous authentica-
tion. Laghari et al. [44] showed that a motion-based signature
had achieved a 1.46% FAR and 6.87% FRR when tested
on a data set collected from motion sensors of ten partici-
pants’ smartphones. While such methods are robust against
shoulder surfing attacks [89], they: 1) require the user input
and engagement once authentication is required; 2) fail to
offer a continuous transparent authentication; and 3) are secret
based and knowledge based since the user must memorize
the used signature. Similar implementations include wav-
ing gestures [70], free-form gestures [76], and “picking-up”
movement (i.e., picking the phone and raising it for answering
a call) [71].

Ehatisham-ul Haq et al. [28] proposed a continuous authen-
tication system that identifies mobile users based on their
activity patterns using embedded sensors, i.e., accelerome-
ter, gyroscope, and magnetometer. The authors reported an
analysis of the system performance when the smartphone
is placed at five different locations on the user’s body.
Amini et al. [67] introduced DeepAuth, an LSTM-based user
authentication method, which uses sensory data extracted from
the accelerometer and gyroscope to model users’ behavioral
patterns. The experiments, which were carried out on data
collected from 47 users with 10—13 min each, have shown an
average accuracy of 96.7% for 20-s authentication window.
Zhu et al. [90] introduced a technique based on users’ phone-
skating behavior captured by motion sensors. The experiments
reported an average EER of 1.2% using data of 20 users.
Lee and Lee [81] introduced an SVM-based system for user
authentication using readings from three motion sensors to
achieve an average accuracy of 90% when using data collected
from four participants.

Exploring the effects of using different sensory data aug-
mentation process, Li ef al. [82] examined five data augmen-
tation methods to authenticate users with SensorAuth. The
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TABLE III
SUMMARY OF THE RELATED WORK FOR MOTION-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED MODALITIES, UTILIZED
SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

#

Auth.

Study  Modalities Sensors Methods Users EER FAR FRR TPR Accuracy . Platform
sers Time
[70] Motion Gesture Ac SVM 8 X 3.67% X X 92.83% X GoogleG3 (A-4.4)
[71] Picking-up Motion Ac, Gy, Ma SVM 31 6.13% v v X X X X
[55] Motion & keystroke  Ac, Gy, Pr SVM 100 1.25% v v X 99.13% X X
[72] Motion Gesture Ac SVM 8 X X X X 95.83% X GoogleNexus5 (A-4.0)
[73] In-air Handwriting LMC SVM 100 0.6% v v X X X X
[74] In-air Handwriting Ac, Gy RF 5 X X X X 32.87% X LG R Watch (A-Wear)
[75] Shacking Motion Ac, Gy DTW-LSTM 150 X 0.1% X X 96.87% X GoogleNexus4 (A-5.1)
[76] Free-form Gesture Ac, Gy DTW X 3% 0.02% 10% X X X SamsungGalaxyS3 (A-4.3)
[77] In-air Handwriting Ac DTW* 34 2.5% v v X X X X
[78] In-air Handwriting Ac, Gy, Or MLP X X X X 84.5% X X GoogleNexus6 (A-7.1.1)
[44] Pick-up Motion Ac CcC 10 X 1.46%  6.87% X X X HTC-x
[79] Motion Gesture Ac, Gy Naive Bayes 10 X X X X 83.6% X MotorolaMotoG (A-10.0)
k-NN 10 X X X X 89.8% X MotorolaMotoG (A-10.0)
MLP 10 X X X X 92.7% X MotorolaMotoG (A-10.0)
SVM 10 X X X X 92.2% X MotorolaMotoG (A-10.0)
[80]  Hand-movement Ac, Gy Naive Bayes 50 X 2% X X 89% X X
Ma, Or, Gy SVM 50 X 18% X X 74% X X
I-F 50 X 0% X X 93% X X
[81] Free motion Ac, Ma, Or SVM 4 X X X X 90% 20s GoogleNexus5 (A-4.4)
[28] Free motion Ac, Ma, Gy SVM 10 v X X v 97.95% 180s SamsungGalaxyS2 (A-2.3)
[67] Free motion Ac, Gy LSTM 47 X v v v 96.7% 20s GoogleNexus5X (A-8.1)
[82] Free motion Ac, Gy SVM 100 8.33% X X X X 5s SamsungGalaxyS4 (A-4.4)
[47] Free motion Ac, Gy, Ma LSTM 84 0.09%  0.96%  8.08% v 97.52% 0.5s X
[83] Eye movement Ca SVM 20 10.61% v v v 88.73% 10s GoogleNexus4 (A-5.1)
[32] Eye movement Ca SRC 30 6.9% v v v 93.1% 130s RaspberryPi3ModelB

Ac: Accelerometer, Gy: Gyroscope, Ma: Magnetometer, Pr: Pressure, LMC: Leap Motion Controller, Or: Orientation, RF: Random Forest,
SVM: Support Vector Machine, DTW: Dynamic Time Wrapping, LSTM: Long Short Term Memory, MLP: Multilayer Perceptron,
CC: Cross-correlation, k-NN: k-Nearest Neighbor, I-F: Isolation Forest, SRC: Sparse Representation Classification.

overall results of SensorAuth have shown an EER of 4.66%
when using a 5-s window.

Using different motion-based modality, Zhang et al. [32]
introduced an eye movement-based implicit authentication
method based on eye movement in response to visual stim-
uli when using a VR headset. The authors reported imposters’
detection accuracy of 91.2% within 130 s. Song et al. [83]
conducted a similar study on smartphones to track individual
eye movement with the built-in front camera to investigate
using gaze patterns for user authentication [83]. The authors
reported an average system accuracy of 88.73% when tracking
users’ eye movement for 10 s.

The summary of the related work associated with motion-
based user authentication is listed in Table III. In this
table, the performance metrics and authentication time are
reported based on the original referenced paper. We follow
this approach for all the following tables. Most of the studies
use embedded motion sensors, such as accelerometer, gyro-
scope, and orientation sensors. Using motion-based methods
for user authentication allowed an authentication accuracy of
up to 99.13% using SVM trained on sensory data collected
from motion sensors [55].

Insights and Challenges: While motion-based user authenti-
cation methods can detect and classify legitimate users, it has
been shown that using the motion-based authentication alone
achieves a relatively lower accuracy (up to 96.87%) in com-
parison with methods that incorporate multiple modalities. For
example, using the keystroke dynamics along with motion sen-
sors, i.e., as an indication of active usage of the device, enables
a higher authentication accuracy [55]. Note that some motion-
based modalities, e.g., waving gestures, free-form gestures,
motion-based signature, and in-air writing, fail to offer a

covert continuous authentication. Therefore, numerous studies
have explored other modalities that rely on behavioral biomet-
rics captured by the motion sensors and wearable devices to
implement a transparent continuous authentication. Handling
information from multiple sensors and sources, e.g., wearable
devices, for an implicit authentication is a challenging task
that requires several on-device data preprocessing techniques,
temporal data alignment, and accurate modeling and matching.

Common open challenges of using motion-based continuous
authentication on smartphones include the following.

1) Power Consumption: Intuitively, continuous authentica-
tion schemes, in general, consume power. This consump-
tion is due to multiple processing components of the
adopted method, data collection and sampling, feature
extraction, model inference, and matching algorithms.
For example, a study by Lee and Lee [68] shows that
continuously querying of sensors data at a 50-Hz sam-
pling rate for 12 h can consume up to 5% of the battery
life even without active usage (i.e., the device is locked).
Using a higher sampling rate can result in significantly
higher power consumption [68], [107]. Note that power
consumption varies from a device to another, consid-
ering the hardware configurations and processing units.
For example, a study by Zhu et al. [107] shows that
the power consumption of running RiskCog for 3 h with
a 50-Hz data sampling rate on three devices as follows:
Samsung N9100 (4.4%), Sony Xperia Z2 (3.6%), and
MI 4 (4.2%).

Computation and Memory Overhead: Motion-based
continuous authentication requires continuous collection
and processing of data as well as high-frequency authen-
tication via model or matching algorithm inference.

2)
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Moreover, data records within the collection time-
frame and predefined operational thresholds increase
the memory overhead. Optimizing the computational
and memory requirements for motion-based schemes is
considered an open challenge.

3) Adversarial Attacks: Motion-based authentication
schemes can be vulnerable to attacks, including
observation-based attacks (e.g., observing and repro-
ducing in-air handwriting and gestures) [108]-[110]
and sensor-based inference attacks (e.g., sensor-based
side-channel inference attacks) [111]-[115]. While
behavioral biometrics can be accurately captured by
sensors, sensors’ data can be collected by a variety of
applications that may present a threat to the adopted
modality. Addressing such attacks is an interesting and
open research direction.

IV. GAIT-BASED AUTHENTICATION

Gait recognition has gained increased interest in recent
years, especially with the vast adoption of mobile and wearable
sensors. Gait recognition is defined as the process of identi-
fying an individual by the manner of walking using computer
vision and/or sensory data collected from environmental and
wearable sensors [116]. Computer vision approaches for gait
recognition include segmenting the individual’s images while
walking and capturing the features that enable accurate recog-
nition [91]. While using sensory data, including: 1) adopting
floor sensors, where the gait-related features are captured once
the person walks on them [92], [93] and 2) adopting wearable
sensors, which aims to collect information that enables gait
recognition [92]. For mobile security and authentication, gait
recognition is usually done using wearable sensors, especially
the reading of the motion sensors (e.g., accelerometer) of the
mobile device, to enable continuous transparent authentication.

The general approach to gait recognition includes four steps:
1) data acquisition step in which the device is placed in a
certain way that enables the walk activity recording; 2) data
preprocessing step for reducing the introduced noise by the
data collection method or other environmental factors; 3) walk
detection step using either traditional cycle or machine learn-
ing techniques; and 4) analysis step [85]. Handling the data
acquisition process requires accurate readings from motion
sensors as the user places the device in a predefined manner,
such as carrying the device inside of a pouch [99], in the pants
pocket [85], [100], or in hand [101]. The studies conducted
for mobile security using gait-based biometrics usually include
data collection from a population of size equal to or less than
50 participants [99]-[101], and processed in controlled con-
ditions to minimize the effects of outside factors [102]. Even
though some studies have attempted to capture gait-related
metrics from a real-world collection of sensory data, such as
the study by Nickel and Busch [102], generally, the data col-
lection requires an ideal setting at least in one aspect (e.g.,
walking patterns or floor condition) [3].

The second step after acquiring the data, the preprocessing
step takes place to clean, reduces the noise, and normalizes the
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data. The major task in this regard is the noise reduction con-
sidering various possible noise sources, such as environmental
and gravitational factors, floor conditions, and the users’ shoes
or other wearable materials. Since the gait-related features
rely heavily on readings from motion sensors, such as the
accelerometer, which are very sensitive, the adopted method
should account for further noise [100]. Such noises can be han-
dled using linear interpolation and filtering techniques, while
environmental noise adds much complexity to the walk detec-
tion task, which can be minimized using activity recognition to
remove any irrelevant data [99]. For the walk detection, cycles
(i.e., the time between two paces bounded by maximum and
minimum threshold across the three axes) or machine learn-
ing techniques are both utilized in the literature. Cycle-based
approaches are commonly used since the average cycle length
is easily and simply calculated to detect cycles by moving for-
ward or backward in intervals of the average cycle length with
some correction measurement. On the other hand, machine
learning-based approaches have shown to be accurate for auto-
matic walk detection [102]. Such techniques require: 1) data
collection module for sensory data readings; 2) data prepro-
cessing stage for handling and reducing possible noise; and
3) walk detection model.

The final step of gait recognition is the analysis of time
intervals, frequencies, or both. Using time intervals anal-
ysis, some metrics can be extracted and studied, such as
cycle statistics, including the minimum, average, and maxi-
mum acceleration values, and cycle lengths and frequencies.
Moreover, cycle variance and stability are measured by accel-
eration moments [85], [116]. Using frequency analysis, usually
conducted using discrete or fast Fourier transforms, it has
been shown that the first few coefficients resulting from each
conversion are highly relevant for detecting distinctive gait
patterns [85].

Wang et al. [91] and Gafurov and Snekkenes [92] used
a k-NN model to classify legitimate users using gait-based
features, where Wang er al. used the camera to capture
the user movement, and Gafurov et al. captured the user
movement using cyclic rotation metric device attached to dif-
ferent places of the body (ankle, hip, pocket, and arm). Both
studies achieved an accuracy of above 85%, with EER of
3.54% and 5%, respectively. Multiple studies used accelerom-
eter as a standalone sensor to capture user movement for user
authentication task [85], [94]-[102].

Both Thang et al. [94] and Hoang et al. [95] collected data
of 11-14 users and used SVM-based models for capturing user
patterns, achieving nearly the same accuracy of 92%. In addi-
tion, Hoang et al. [100] achieved an EER of 3.5% by using a
fuzzy commitment algorithm on a study sample of 38 users,
outperforming its counterparts. Others [103]-[106] incorpo-
rated different sensors to capture the motion aspects of the
users, achieving an accuracy of up to 96% by using accelerom-
eter, gyroscope, compass, piezoelectric energy harvester, and
electromagnetic energy harvester [103]. The summary of the
gait-based user authentication methods is shown in Table IV.

Insights and Challenges: Similar to motion-based user
authentication methods, gait-based methods do not achieve
a high relative accuracy nor precision in user authentication
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TABLE IV
SUMMARY OF THE RELATED WORK FOR GAIT-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED MODALITIES, UTILIZED
SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

Auth.

Study  Modalities  Sensors Methods U EER FAR FRR TPR Accuracy . Platform
sers Time

[91] Gait Camera k-NN 20 3.54% v v X 87.5% X X
[92] Gait MRC - ankle k-NN 21 5% v v X 85.7% X X

MRC - hip k-NN 100 13% v v X 73.2% X X

MRC - pocket k-NN 50 7.3% v v X 86.3% X X

MRC - arm k-NN 30 10% v v X 71.7% X X
[93] Gait FSR FLD 10 X 5.07% X X 88.8% 0.127s ComputerSimulation
[85] Gait Ac Guidelines X X X X X X X X
[94] Gait Ac SVM 11 X X X X 92.7% X GoogleNexusOne (A-2.1)
[95] Gait Ac SVM 14 X X X X 91.33 £ 0.67% X LGOptimusG (A-4.1.2)
[96] Gait Ac cC 36 7% v v X 4 X X
[97] Gait Ac DTW-SVM 51 33.3% v v v 53% X GoogleG1 (NA)
[98] Gait Ac CRM 48 21.7% v v v 53% 30s MotorolaMilestone (A-2.2)
[99] Gait Ac k-NN 36 8.24% X X X X 1.7m MotorolaMilestone (A-2.2)
[100]  Gait Ac FC 38 3.5% 0 16.18% X X X X
[101]  Gait Ac-In-hand CcC 31 17.2% X X X X X X

Ac—Chest CcC 14.8% X X X X X X

Ac—Hip CcC 14.1% X X X X X X

Ac—In-hand FFT 14.3% X X X X X X

Ac—Chest FFT 13.7% X X X X X X

Ac-Hip FFT 16.8% X X X X X X
[102]  Gait Ac HMM 48 6.15% v v v X 33s MotorolaMilestone (A-2.2)
[103]  Gait Ac, Gy, Co, PEH, EEH PMSSRC 20 6-12.1% v v v 96% 1.6ms SensorTag (Contiki-3.0)
[104]  Gait Ac, Gy, Camera Matching 10 X v v v 91% 15-75s ComputerSimulation

20 20.8% v v v 81.3%
30 X v v v X

[105]  Gait Ac, Gy, Ma SVM & RF 50 X X X X v 6.4s GoogleNexus5 (A-4.4)
[106]  Gait Ac, Gy, Ma CC-FC 15 5.5% v v X 95% 12s ComputerSimulation

MRC: Cyclic Rotation Metric, FSR: Force Sensing Resistor, Ac: Accelerometer, Gy: Gyroscope, Co: Compass, PEH: Piezoelectric Energy Harvester,
EEH: Electromagnetic Energy Harvester, Ma: Magnetometer, SVM: Support Vector Machine, RF: Random Forest, DTW: Dynamic Time Wrapping,
CC: Cross-correlation, k-NN: k-Nearest Neighbor, FLD: Fisher Linear Discriminant, CRM: Cyclic Rotation Metric, FC: Fuzzy Commitment,

FFT: Fast Fourier Transform, HMM: Hidden Markov Model, PMSSRC: Probability-based Multi-Step Sparse Representation Classification.

tasks. Generally, gait-based user authentication methods are
feasible in specific applications, which requires capturing the
user’s gait traits while moving, e.g., player detection in a
team-based sport via wearable sensing devices. Applying gait-
based authentication for smartphone users requires addressing
a variety of challenges, such as the following.

1) Data Sources: Collecting gait-related sensory data
requires visual information as well as motion
information from multiple sensors.

Sensors Placement: As changing the placement of the
device can significantly change the sensory readings.
3) Adopting Alternatives: As gait-based authentication fails
to provide continuous authentication when the user is not
moving.

Usability: As the user state at the enrollment stage may
differ from the state the inference stage. Moreover, the
gait-based traits are highly dependent on the user’s phys-
ical state when capturing the data. Such challenges may
explain the relatively low accuracy of the gait-based
authentication methods.

2)

4)

V. KEYSTROKE-BASED AUTHENTICATION

One of the earliest behavioral authentication methods is
based on studying the keystroke dynamics. Most keystroke
dynamics-based methods are cost effective and do not require
additional modules to operate [24]. During the usage of
the device, when a key input is required (e.g., texting), the
keystroke dynamics-based authentication method continuously
validates the user since behavioral dynamics can be distinc-
tive across users. Conducting authentication via keystroke

dynamics requires analyzing and capturing the distinctive
features and patterns of users’ keystrokes when using the
device [22], [23]. Common features include: 1) keypress
frequency, which calculates the frequency of keypress events;
2) key release frequency, which calculates the frequency of
key release events; 3) latency and hold time, which calcu-
lates the rates of press-to-press, press-to-release (which is also
known as the hold time), release-to-release, and release-to-
press events; 4) finger’s pressure while touching the screen;
5) pressed area size by the user’s fingers; and 6) error rate,
which is the frequency of using backspaces or deletion option.

Using keystroke dynamics for authentication or user vali-
dation has been adopted on traditional computers before their
application to smartphones [117]. Even though it seems to
be an easier task to implement a keystroke dynamics-based
authentication on computers due to the less complex feature
space, Joyce and Gupta [118] showed the uniqueness of both
written signatures and typing behavior is originated from the
physiology of the neurological system.

The recent application of keystroke dynamics takes advan-
tage of embedded sensors (e.g., motion sensors on smart-
phones) to improve the authentication accuracy, especially
when the key-based input is unavailable there [114], [128].
Another distinction between applying keystroke dynamics-
based methods on smartphones and computers is the large
space of key-based input in the smartphone since it includes
touches and swipes that are meant for interacting with the
applications without typing textual content [119]. Several stud-
ies have addressed the generalization of these methods to
different types of input. For instance, McLoughlin ez al. [119]
showed that using key press and release frequencies and the
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TABLE V
SUMMARY OF THE RELATED WORK FOR KEYSTROKE DYNAMICS-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED
MODALITIES, UTILIZED SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

Auth.

Study  Modalities Sensors Methods U EER FAR FRR TPR Accuracy . Platform
sers Time
[117]  Keystroke Dynamics ~ NA k-NN 63 X X X X 83.22-92.14% X X
[118]  Keystroke Dynamics ~ NA Matching 33 X 0.25% 16.36% X X X X
[119]  Keystroke Dynamics ~ NA Distance & CI 3 X v v X X X RenesasH8S-2377
[120]  Keystroke Dynamics ~ NA RBFN 25 X 36% 26.6% X X X X
Fuzzy 25 X 18.6% 19% X X X X
PSO-Fuzzy 25 X 8.09% 7.58% X X X X
GA-Fuzzy 25 X 8.79% 7.94% X X X X
PSO-GA Fuzzy 25 X 2.07% 1.73% X X X X
[121]  Keystroke Dynamics ~ NA Distance 15 X 1297%  2.25% X X X X
[122]  Keystroke Dynamics =~ NA Distance 25 4% X X X X 632-2151ms SamsungSCH-V740 (NA)
[123]  Keystroke Dynamics ~ NA SVM 10 X X X 98.7% 98.6% X X
[124]  Keystroke Dynamics  Ac, Gy k-NN 20 0.08% X X X X 200ms X
[125]  Keystroke Dynamics ~ NA MLP 32 X 6.33% 4.89%  95.11% 94.81% X SamsungGalaxyS5 (A-4.4.2)
[19] Keystroke Dynamics ~ NA SVM 24 1.42% 2% 1% 99% 99% X SamsungGalaxyS5 (A-4.4.2)
[126]  Keystroke Dynamics ~ Ac SVM 5 5.1% X X X 97.9% X HuaweiP10 (A-7.0)
[127]  Keystroke Dynamics ~ NA DAE-SR 10 5% X X 91.8% 95% X X
[43] Keystroke Dynamics ~ NA MLP 13 X 14% 2.2% X 86% X X
[58] Keystroke Dynamics ~ NA MCF 64 X X X X 89.7% X X

Ac: Accelerometer, Gy: Gyroscope, CI: Confidence Interval, RBFN: Radial Basis Function Network, PSO: Particle Swarm Optimization, k-NN: k-Nearest Neighbor,
GA: Genetic Algorithm, DAE-SR: Deep Auto Encoder and Softmax Regression, MCF: Multi-Classifier Fusion, SVM: Support Vector Machine, MLP: Multilayer Perceptron.

latency between two presses contribute greatly to establishing
distinctive keystroke behavior for users. The authors showed
that the application should account for the inconsistencies
in recorded data by introducing weights based on the vari-
ance of data (i.e., lower variance gets higher weights). Their
results show an accuracy of more than 90%, establishing the
validity of using keystroke dynamics as a biometric for authen-
tication with minimal computational overhead and increased
usability.

Buriro et al. [129] designed an authentication scheme
based on the user’s hand movements and timing features
as they enter ten keystrokes. The authors conducted experi-
ments using data collected from 97 participants and reported
an authentication accuracy of 85.77% and FAR of 7.32%.
Similarly, Zahid et al. [120] studied the keystroke behav-
ior of 25 users including features, such as the hold time,
error rate, and latency. The authors suggested a fuzzy clas-
sifier to account for the diffused features space and argued
that presenting the classification task of keystroke behav-
ior as an optimization problem benefits the robustness of
the model when compared to similarity-based methods [121].
Using a fuzzy classifier with particle swarm optimization and
genetic algorithms, their proposed method showed 0% FRR
and 2% FAR, suggesting high security and usability poten-
tial. However, keystroke dynamics are often incorporated with
other modalities for improving performance and accuracy. For
instance, Hwang et al. [122] suggested, including rhythm and
tempo as components for studying keystroke dynamics, i.e., a
user is required to follow a distinct and consistent timing pat-
tern for accurate keystroke-based authentication. For example,
a given term can be entered digit by digit separated with subse-
quent short and long pauses that are controlled by tempo cues,
e.g., a metronome for counting pause intervals. In their study,
the authors showed an average improvement of about 4% in
the EER evaluation metric when using artificial rhythmic input
with tempo cues in comparison to natural rhythms. However,
adopting such methods adds complexity to the usability
aspect.

Using smartphone-embedded sensors to support keystroke
dynamics-based authentication has been repeatedly suggested
to improve the performance and to provide transparent
authentication. Wu er al. [123] proposed incorporating
velocity-related metrics to reach an accuracy of 98.6% for clas-
sifying data from ten users using an SVM classifier. Similarly,
Giuffrida er al. [124] proposed incorporating keystroke data
with motion sensors data, namely, accelerometer and gyro-
scope, to conclude that metrics obtained from the accelerom-
eter data are more useful than those obtained from the
gyroscope. The authors showed that combining features from
motion sensors with keystroke metrics provides similar results
as adopting only the motion sensors-related features alone,
i.e., the study shows that sensor-related features can be more
useful than keystroke dynamics in terms of authentication.
However, obtaining and analyzing high-frequency sensory data
can be power consuming. Table V shows a list of authenti-
cation methods based on keystroke dynamics. The proposed
approaches show a promising direction for using this modality
for user authentication, achieving an accuracy of up to 99%
by Cilia and Inguanez [19].

Insights and Challenges: Keystroke dynamics-based meth-
ods have several advantages, such as: 1) their high
authentication accuracy that can reach up to 99%; 2) high
power-efficiency in comparison with other methods; and
3) hardware independence since these methods can oper-
ate with either physical or on-screen keyboards. However,
implementing a keystroke dynamics-based approach can be
challenging for several reasons.

1) User Behavioral Changes: Capturing keystroke dynam-
ics as a behavioral modality under uncontrolled condi-
tions, e.g., user’s activity (standing, walking, etc.), user’s
emotional or physical state change, and the in-use appli-
cation, is challenging and requires testing under these
nontrivial scenarios.

2) Feature Extraction and Selection: The extracted metrics
should be robust against noise and behavioral changes.
Considering the limited space of features, recent studies
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have considered incorporating other modalities to extend
the feature space, thus allowing for the selection of a
distinctive user representation that can be generalized to
a relatively large population.

3) Adopting Alternatives: Since these methods operate only
when the user interacts with the keyboard, the implicit
authentication module should allow for possible alterna-
tives when the user uses the device without typing (e.g.,
watching a video, placing a call, etc.). Other challenges
can be related to typing with different languages and
whether the user’s typing behavior changes across lan-
guages, which require further attention through further
research.

VI. TOUCH GESTURE-BASED AUTHENTICATION

Using touch gestures as a biometric modality extend the
landscape of transparent authentication applications to include
a variety of devices with touchscreen unit (e.g., smartwatches,
digital cameras, navigation systems, and monitors) [3]. Several
studies have investigated the touch gestures as a behavioral
biometrics for continuous authentication since it can be conve-
nient and cost-effective. Touch gestures include swipes [130],
[147], flicks [131], [132], [135], slides [133], and handwrit-
ing [148]. The distinction between keystroke dynamics and
touch gestures can be summarized in the input form for users
and the method of input. The commonalities between the two
modalities are the space of improvement when accounting for
motion sensors [131], [134]. Therefore, many studies have
incorporated motion-based features to gesture-based meth-
ods [135]. Considering features from touch gestures enables
accurate authentication with an accuracy reaching 99% and
minimal EER such as 0.03% when applying the k-nearest
neighbor classifier or other distance-based classifiers [134].

Leveraging the abundance of information generated by the
operating system of smartphones, a large number of features
can be extracted from touch gestures such as reading from
the accelerometer, pressure, gravity, velocity, touch area, and
time-related measurements. Such features allow for accurate
calculation of the gesture statistics and developing patterns for
user authentication [115], [136]-[139]. Antal and Szabd [140]
extended the feature space of swipe gestures to include touch
duration, trajectory length, acceleration, average speed, touch
pressure, touch area, and gravity readings. Using data from
40 users, including 58 samples, the authors performed one-
and two-class classifications using multiple classifiers, such
as Bayes Net, k-nearest neighbor, and random forests. The
authors reported that random forests showed an EER of
0.004%. Their results showed that the device motion and
positioning are important factors in distinguishing users.

Since touch gestures are commonly known as soft bio-
metrics that could enable the recognition of gender and
proportional measures such as physical attributes, including
hand size, forearm length, and height, they are beneficial in
criminal investigations. Miguel-Hurtado et al. [149] proposed
studying the swipe gesture for gender prediction using a vari-
ety of features, including the swipe’s length, width, touch area,

pressure, velocity, acceleration, start-to-end angle, and oth-
ers. The authors showed that applying a multilinear logistic
regression classifier for gender prediction achieves an accu-
racy of 71% when the direction of the swipe is down to up.
Using a fusion of swipe direction-based decision, the accuracy
reaches 78%. Similarly, Bevan and Fraser [150] investigated
the relationship between swipe gestures, thumb length, and
gender. Using data from 178 users performing one-hand ges-
tures using the thumb, the authors collected 21 360 samples
of swipes in various directions. Among the calculated fea-
tures, the results showed a strong correlation between thumb
length and gestures, and they reflected in the velocity, acceler-
ation, and completion time. Moreover, the study also showed
that male users completed the gestures at a higher speed than
female users.

The landscape of using touch gestures as behavioral biomet-
rics for user authentication includes devices designed for users
with disabilities. For example, Azenkot et al. [151] proposed
PassChords, which was designed for authenticating users with
vision impairments using a predefined sequence of screen
taps. Another application is proposed by Zaliva et al. [53] for
users with finger injuries, which uses the finger’s trajectory
and posture before touching the screen using its positioning
and proximity. For this application, the direct touch gesture
(i.e., the contact with the screen) is not fully required, and
only the proximity-related measurement is possibly feasible
to authenticate users.

Several studies have shown that gesture-based authentica-
tion schemes are application dependent, and gesture-based data
can vary significantly from one application to another, which
makes the generalization aspect of gesture-based schemes for
continuous authentication across different applications is lim-
ited [141]-[143], [152]. Therefore, a “context-aware” approach
is a potential solution to generalize gesture-based methods.
Khan and Hengartner [12] showed that the performance
of gesture-based methods could be improved by allowing
context-aware implementation, where different applications
control the tuning of features. To this end, the authors used the
Kullback-Leibler (KL) divergence metric, which is shown to
differ by application indicating the importance of accounting
and tuning the features based on the used application. Using
data of 32 users who were instructed to use four different
applications during the data collection process, the experimen-
tal results showed that using the ‘“context-aware” approach
improves the accuracy of the device-centric approach.

Table VI shows a list of proposed gesture-based authenti-
cation methods using varieties of touch gestures and machine
learning models. Random forest, in particular, is among the top
achieving and adopted models in this modality-based method,
with an accuracy above 99% as shown in [145] and [53].

Insights and Challenges: Similar to keystroke dynamics-
based methods, gesture-based authentication methods have
several advantages, including: 1) their high authentication
accuracy, which can reach up to 99.9%; 2) operating efficiently
in terms of both power and computation; and 3) conveying
high resilience against mimicry attacks since gesture-based
modality incorporates multiple independent features, restrict-
ing the ability of an impostor to successfully reproduce one
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TABLE VI
SUMMARY OF THE RELATED WORK FOR GESTURE-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED MODALITIES, UTILIZED
SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

Study  Modalities Sensors Methods Users EER FAR FRR TPR Accuracy A.mh‘ Platform
sers Time

[130]  Swipe Gesture NA ANN-CPANN 71 X 0.08% 0 X X X X
[131]  Flick Gesture AC, Gy SOM NA X X X X 92.8% X X
[132]  Flick Gesture Or k-NN 16 6.85% v v X X <100ms HTCWildfire (A-2.2)
[133]  Slide Gesture NA SVM 60 0.01-0.02% 0.03%  0.05% X X 0.3s MotorolaMES525 (A-2.2)
[134]  Swipe Gesture Ac, Or MHD 104 0.31% v X v X X SamsungGalaxyS2 (A-2.3)

DTW 104 1.55% v X v X X SamsungGalaxyS2 (A-2.3)
[135]  Flick Gesture Ac Naive Bayes 10 X 1.3% 8% 92% 98% X HTCDesire600 (A-4.3)
[136]  Touch & keystroke NA k-NN 10 1% X X X 99% 20ms SynapticTouchpad (NA)
[137]  Keystrokes/Touch/Handwriting ~ NA SVM-RBF 32 0.75-8.67% X X X v X SamsungGalaxyS2 (A-4.1.2)
[138]  Gesture NA MGGM 20 v X X X 89% 53ms GoogleNexus4 (A-4.3)
[139]  Gesture NA PSO-RBFN 20 8.1% 2% 8.2% X X X SamsungGalaxyS2 (A-4.0.1)
[140]  Swipe Gesture Or RF 40 0.2% X X X X X GoogleNexus7 (A-4.1.2)
[53] Touch Gesture NA RF 14 X X X 99.9% 99.9% 12.6s SamsungGalaxyS4 (A-4.4)
[141]  Swipe Gesture NA RF 34 16.22-22.94% X X X X X X
[142]  Touch Gesture NA DTW-k-NN 23 v X X 91% X X SamsungGalaxyS3 (A-4.3)
[143]  Touch Gesture NA RF 71 1.8% 0.1% 18.52% X X 0.77s HuaweiAscendMate (A-4.4)
[144]  Touch Gesture NA RF 71 5.4% X X X X X SamsungTab210 (A-4.1)
[145]  Touch Gesture NA RF NA X 2.54% 1.98% X 99.68% X X
[146]  Touch Gesture NA Matching 30 X X X 93.01% 93.76% X X

Ac: Accelerometer, Gy: Gyroscope, Or: Orientation, ANN: Artificial Neural Network, CPANN: Counter Propagation Artificial Neural Network, RBFN: Radial Basis Function Network,
SOM: Self Organizing Maps, k-NN: k-Nearest Neighbor, SVM: Support Vector Machine, MHD: Modified Hausdorff Distance, RF: Random Forest,
DTW: Dynamic Time Wrapping, RBF: Radial Basis Function, MGGN: Multivariate Gaussian Generative Model, PSO: Particle Swarm Optimization.

feature given another. Moreover, using a high sampling rate
(i.e., small timeframe) makes it difficult to observe and repli-
cate the touch gestures. However, several challenges should
be considered, including understanding users’ temporal behav-
ioral changes, application preferences, users’ activity, users’
mobility, etc.

VII. VOICE-BASED AUTHENTICATION

Speaker identification using voice-related features has been
investigated extensively in [25] and [86]. Voice-related features
combine both physiological aspects (e.g., vocal tract and lips
characteristics) and behavioral traits (e.g., emotion- or age-
related tones), allowing the speak/voice analysis over large
feature space [161]. Based on [162], there are two approaches
for using voice to authenticate/identify the speaker, which are
as follows.

1) Text-dependent approach, in which users are authenti-
cated based on the matching of speaking a predefined
phrase. Since the users speak a certain phrase for
authentication, this method is straightforward and very
accurate. However, it does not allow for transparent or
continuous authentication, and it is not a secret-based
method.

2) Text-independent approach, in which users are authenti-
cated based on features extracted from the voice regard-
less of the spoken words. This approach allows higher
flexibility, especially in offering transparent authentica-
tion, where users are unaware of the service. However,
accurate text-independent authentication accuracy faces
different challenges due to the dynamic changes in the
feature space of voice input accounting for the user
condition and other environmental factors.

Speaker recognition using voice features follows the typical
pattern recognition system, starting from data collection and
preprocessing, going through the feature extraction and selec-
tion, and ending with the modeling and pattern recognition.
Similar to conventional machine learning-based systems, the

quality of features contributes considerably to the accuracy
of speaker recognition. Such features include short-term spec-
tral features, temporal and rhythmic, voice source, prosodic,
and conversation-level features [3]. Short-term spectral char-
acteristics represent the resonance attributes of the vocal tract
and are often extracted with high frequency from 20- to
30-ms timeframes. Prosodic and temporal traits include into-
nation and rhythmic patterns extracted from long timeframes.
Conversation-level features are high-level properties extracted
from the textual contents of spoken words, such as word or
phrase frequencies.

The quality of features is measured by their distinctive
nature and their robustness against possible introduced noise
(e.g., the user condition and environment) [163]. In this regard,
a study by Reynolds [162] showed that spectral features
provide high-quality, simple, and discriminative feature space.

Using the extracted features, a variety of models are uti-
lized for voice/speaker recognition, such as SVM and Gaussian
mixture models [163]. Early applications for voice recog-
nition include access control, personalization, and forensic
and criminal investigations [162]. The application landscape
has increased to include online banking (i.e., conducting a
transaction via voice communication as the voice recogni-
tion system transparently and continuously authenticates the
customer) [3]. While voice-based user authentication methods
capture the voice using the microphone, different works can be
distinguished by data preprocessing and the utilized machine
learning algorithm. Zhang et al. [154] achieved an accuracy of
99.34% with EER and FAR of 1% using the cross-correlation
method with an authentication time of half a second on a sam-
ple size of 21 users. Additionally, using the Gaussian mixed
model, Kim and Hong [158] and Johnson et al. [159] achieved
similar EER of around 6% on a sample size of 50 and 48,
respectively. Similarly, Lu et al. [155] achieved an accuracy of
95% and TPR of 99% in conducting user authentication tasks
using the Gaussian mixed model with a sample size of 104
users. Multiple machine learning methods may be incorporated
for user authentication tasks, Wang et al. [156] used principle
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TABLE VII
SUMMARY OF THE RELATED WORK FOR VOICE-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED MODALITIES, UTILIZED
SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

Auth.

Study Modalities ~ Sensors Methods U EER FAR FRR TPR  Accuracy . Platform

sers Time
[153]  Voice Ca, Mi Matching 27 X X 3% X 93% < 24.7s iPhone5S (i0S7)
[154]  Voice Sp, Mi CC 21 1% 1% X X 99.34% 0.5s SamsungGalaxyNote5 (A-6.0)
[155]  Voice Sp, Mi GMM 104 X X X 99% 95% X SamsungGalaxyS6 (A-5.0)
[156]  Voice Mi PCA-SVM 18 5.4% 2% X 93% 93.5% X ComputerSimulation
[157]  Voice Mi DTW 15 X 1% 15% X 88.6% X XiaomiRedmiNote3 (A-5.5)
[62] Voice Mi HMM 54 21.58% X X 4 X 0.07s SamsungGalaxyS5 (A-4.4)
[158]  Voice Mi GMM 50 6.24% v v X X 10.76s ComputerSimulation
[159]  Voice Mi GMM 48 6% v v X X X ComputerSimulation
[160]  Voice Mi Similarity 12 1.01% 1% X 99% 99.3% X SamsungGalaxyNote3 (A-6.0)

Ca: Camera, Mi: Microphone, Sp: Speaker, GMM: Gaussian Mixed Model, PCA: Principle Component Analysis,
CC: Cross-Correlation, SVM: Support Vector Machine, DTW: Dynamic Time Wrapping, HMM: Hidden Markov Model.

components analysis with support vector machine to train
data collected from 18 users, achieving an EER of 5.4%
and the overall accuracy of 93.5%. Using a simple approach
may outperform powerful machine learning algorithms in user
authentication tasks, as Zhang et al. [160] achieved an accu-
racy of 99.3% with EER of 1.01% and FAR of 1% using
the sample similarity method. Table VII shows several voice-
based user authentication methods. The listed voice-based
methods show the validity of using this modality for the user
authentication task.

Insights and Challenges: The high availability of voice
recognition systems enables simple and accurate implemen-
tation of voice-based authentication schemes. However, there
are many shortcomings when relying solely on the voice-based
modality for user authentication. Therefore, many studies
have employed voice in multimodal authentication approaches
[18], [62], [65], [158], [164]. These shortcomings include the
following.

1) Background Noise: Voice samples captured by mobile
devices usually contain noises, considering the mobility
and uncontrolled environmental conditions.

2) User Physical and Emotional State: Changes in the
voice caused by emotions or illness (i.e., throat-related
conditions) may affect the performance of the system.

3) Adversarial Attacks: The rise of adversarial examples
suggests the possibility of successfully crafting samples
to fool the authentication model and force it to grant
access to imposters.

4) System Overhead: Continuous voice-based user authen-
tication methods require voice commands and signatures
to be captured and analyzed periodically through a
sophisticated system with multiple stages that include
data collection, noise reduction, and voice recognition.
Such processes introduce overhead in terms of both
power and computation.

5) Usability: Considering the user and environmental
changes and the variety of possible noise sources, voice-
based methods may result in high false acceptance and
false rejection rates. Depending on the sampling rate,
the high false rejection rates can degrade the usability
and user experience. All of those issues require further
attention through additional research efforts.

VIII. MULTIMODAL AUTHENTICATION

Multimodal authentication systems have become increas-
ingly popular since relying on multiple modalities on offer
robust and accurate results in comparison to unimodal systems,
which consider only a single biometric modality. Such systems
offer hardened security, especially against adversarial attacks,
and deliver a flexible method for authentication considering
possible changes of the input data that result in problems in
the enrollment and validation phase [86], [182].

The implementation of multimodal authentication could
require a fusion of multiple data sources, extracted features,
or/and used algorithms and models. The literature shows that
multimodal biometric-based authentication schemes have used
different fusion approaches, such as feature-level fusion, used
modeling algorithms fusion, and decision-level fusion.

1) Feature-level fusion includes combining features from
different modalities to be considered together as an
input to the modeling algorithm. Accounting for possi-
ble heterogeneous resulting feature space from different
sources, a normalization process usually takes place.

2) Algorithm-level fusion includes constructing an ensem-
ble of models that are built based on an individual
of multiple biometric modalities. The ensemble com-
bines outputs by considering matching scores or voting
mechanism to help with the decision.

3) Decision-level fusion occurs when decisions are gen-
erated by individual modalities separately. The final
decision considers all outputs and adopts certain rules
or voting to generate the final output.

Using multimodal authentication on smartphones is a feasi-
ble solution since today’s devices are equipped with a variety
of sensors that support the reading of several biometrics [164].
However, several challenges should be considered when imple-
menting multimodal authentication, such as the input data
quality generated by different sources since poor data result in
poor performance, and the inclusion of multiple data sources
requires reading from different sensors, which could be com-
putationally hungry and energy expensive [183]. Addressing
such challenges effectively allows multimodal authentication
to offer robust and secure access control [184].

Vildjiounaite et al. [101] proposed combining gait and voice
biometrics to increase the performance of user validation.
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Using data samples of 31 users, the authors reported a decrease
in the error rates from 2.82%-43.09% and 13.7-17.2% using
the individual voice and gait recognition, respectively, to
1.97%—-11.8% for adopting a multimodal system incorporat-
ing both biometrics. However, the proposed method is event
dependent and performs differently when the user motion
or speaking is different since the results show that such a
method is ineffective if the user is not speaking or speak-
ing. Zhu et al. [107] proposed an SVM-based method called
RiskCog that can validate users within 3.2 s using sensory
data collected from mobile and/or wearable devices, including
readings of the accelerometer, gyroscope, and gravity sensors.
The authors reported an average system accuracy of 93.8% and
95.6% for steady and moving users, respectively, using a large
data set of 1513 users. Lee and Lee [68] proposed combin-
ing sensors’ readings from the user’s smartphone and other
wearable devices to improve authentication accuracy. Their
experiments on a data set of 35 users have shown an accuracy
of 98.1%, FRR of 0.9%, and FAR of 2.8% by combining data
from users’ smartphones and smartwatches when adopting an
authentication window of 6 s.

Gofman et al. [164] suggested using face and voice bio-
metrics to tackle input data quality and training data scarcity
for mobile authentication. Considering the nature of the data
acquisition process on mobile devices, the authors argued that
data quality is usually in poor condition due to environmental
factors or the utilization of low-cost sensors. Moreover, the
authors stated mobile authentication systems face a training
data scarcity problem since users tend to provide small train-
ing samples during the enrolment phase. Using a multimodal
system, the authors addressed these issues and enhanced
the potential of acquiring high-quality data samples during
user enrollment. The proposed approach incorporated the
Fisherface method for face recognition since it is shown to be
effective under changing environmental conditions, and hid-
den Markov models (HMMs) and linear discriminant analysis
(LDA) for voice recognition (HMM was used for algorithm
score-level fusion and LDA was used for feature-level fusion).
The authors used a quality-based weighting method to adjust
to samples’ quality and limit the impact of poor-quality sam-
ples on the performance of the system. The results showed
a decrease in error rates from 4.29% for the face recogni-
tion module and 34.72% for the voice recognition module to
2.14% for the feature-level fused multimodal system. Similar
work has been proposed by Morris et al. [65] for combining
voice, face, and signature modalities for personal digital assis-
tant devices. The authors reported a decrease in error rates
when combining all three modalities from 3.38%-29.87%
to 0.56%, which is considered a considerable improvement
in the system performance. Their implementation adopts a
text-dependent voice authentication approach since text inde-
pendent can bring much complexity when addressing phonetic
variations, which can computationally expensive and energy
draining when running locally on the device.

Kayacik et al. [174] proposed a data-driven approach with
an ensemble of classifiers to enable the authentication system
to be temporally and spatially aware of the user behavioral
usage and surroundings by taking advantage of several hard
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and soft sensors, such as the accelerometer, Wi-Fi, light sen-
sor, and others. The proposed method requires more than 122 s
to allow the data to be collected for authenticating users and
about 717 s to detect an imposter. However, the experiments
report a high authentication accuracy of 99.4%. Similar work
has been proposed by Li and Bours [185] that incorporates sen-
sory data of smartphones and Wi-Fi information for enabling
users to access an application within 3 s, with an average EER
of 9.19%. Similar studies combinations of multiple biomet-
rics to incorporate face, iris, and periocular recognition [168],
[186], eye gaze, and touch gestures [165], and user behavioral
profiling, keystroke dynamics, and linguistic features [166].
Another direction of research studied users’ behavioral pat-
terns using their usage of applications and Wi-Fi traffic [167].
Table VIII shows the multimodal-based user authentication
methods by using multiple modalities and machine learning
algorithms.

Insights and Challenges: Multimodal-based user authentica-
tion methods are designed by implementing several modalities
that can include both behavioral and physiological biometrics
(e.g., face, voice, and keystroke dynamics) to conduct user
authentication tasks. Recent trends in the authentication space
show that multimodal methods are the favorable choice for
implementing authentication schemes due to their performance
and added security. Since multimodal authentication schemes
incorporate multiple modalities, they intrinsically inherit some
of the shortcomings and challenges of their integrated compo-
nents. However, adopting a multimodal authentication scheme
for continuous authentication on mobile devices adds several
additional challenges, among which we mention the following.

1) Computation and Memory Overhead: Incorporating
multiple modalities requires continuous collection and
processing of data at a high sampling rate, which can
increase the computation and memory overhead of the
device. Moreover, combining the output of multiple
modalities for the authentication decision requires the
inference of multiple models or matching algorithms
to generate the final output. Considering continu-
ous authentication at a high frequency can introduce
major resources bottlenecks, in terms of computations.
Fortunately, current mobile devices are equipped with
multicore processors, GPUs, and even Gigabytes of
RAM, making it feasible to run a wide range of sophisti-
cated applications such as multimodal-based continuous
authentication schemes. Recent trends to secure in-
device operations take advantage of machine learning
libraries that utilize hardware acceleration units, using
GPUs or digital signal processor (DSP), which are avail-
able in most of today’s mobile devices, to implement
local inference of authentication models.

2) Biometric Samples Quality Assurance: The performance
of a system is related to the quality of the collected sam-
ples, as a biometric sample with high quality is essential
for accurate identification. Due to the unreliable fea-
tures that could be obtained from a single biometric
(i.e., the changing emotional or physical state of the user
or poor data acquisition), and to overcome performance
degradation caused by these limitations, researchers
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TABLE VIII
SUMMARY OF THE RELATED WORK FOR MULTIMODAL-BASED USER AUTHENTICATION. EACH WORK IS IDENTIFIED BY THE USED MODALITIES,
UTILIZED SENSORS, DATA SET, MODELING ALGORITHM, AND THEIR PERFORMANCE

Study  Modalities Sensors Methods U # EER FAR FRR TPR Accuracy A!'uh' Platform
sers Time

[62] Face/Voice Ca, Mi LDA-HMM 54 21.58% X X v X 0.39s SamsungGalaxyS5 (A-5.0)
[158]  Teeth Images/voice Ca, Mi HMM@&GMM 50 2.13% v v X X 10.76s Computer Simulation
[164]  Face/Voice NA LDA-Matching 54 2.14% X X X X 1.57s SamsungGalaxyS5 (A-5.0)
[65] Face/Voice/Signature NA GMM 60 0.56% 097%  0.69% X X X X
[165]  Touch/Gaze To, Ca X 13 X X X X 65% 3.1s Computer (NA)
[166]  Keystroke/Linguistic/Behavior =~ NA MLPGRBF 30 3.3% X X X X 2-10m X
[167]  App/Bluetooth/Wi-Fi NA k-NN 200 X X X X 85% X X
[114]  Keystroke/Sensor dynamics To, Ac, Gy k-NN 20 0.14% X X X X X GoogleNexusS (A-2.3)
[128]  Keystroke/Motion/Orientation  To, Ac, Gy PCA-SVM 20 7.16% v v X X 20s SamsungGalaxyS4 (A-4.4)
[168]  Face/Periocular/Iris Ca FA-NN 78 0.68% v X X 4 X SamsungGalaxyS5 (A-4.4.2)
[169]  Face/Periocular Ca Matching 73 1.34% 0.01% X X 94.66% X SamsungGalaxyS5 (A-5.0)
[170]  Face/Periocular Ca CNN 246 X X X v X X
[171]  Keystroke/Gait To, Ac MLP 20 1% 0.68% 7% X X Xiaomi2S (A-5.0.2)
[172]  App/Bluetooth/Wi-Fi/other NA FPOS 33 X v X v 2.3s Nokia7Plus (A-8.0.1)
[173]  Touch/Motion/App/other To, Ac, Gy, Ma, Li SVM 48 v v v X X X
[174]  App/Motion/Wi-Fi/other Ac, Wi-Fi, Li, other Ensemble 7 X X X X 122s Nokia6600 (Symbian-7.0)
[175]  Motion/Gesture Ac, Gr, Or, Ma n-gram 20 X 31.1% X 71.30% X 4.96s X
[176]  Face/Touch/Motion Ca, To, Ac,Gy, Ma Ensemble 100 0.8-3.6% X X X X v ComputerSimulation
[177]  Touch/Motion/other To, Ac, Gy, Ma, other ~ Compound-Voting 30 X 0 0 PO (0720 VivoX6 (A-5.0)
[178]  Touch/Motion To, Ac, Gy SVM 100 15% X X X 88% X SamsungGalaxyS4 (A-4.4)
[179]  Touch/Motion To, Ac, Gy SVM 48 4 501% 6.85% X X v SamsungN7100 (A-4.4)
[18] Face/Voice Ca, Mi CNN-SVM 10 X X X 88.84% 94.07% 30ms SamsungGalaxyS9 (A-8.0)
[180]  Touch/Motion Ac, Gy, Ma CNN-SVM 90 X v v X 1s SamsungGalaxyS4 (A-4.4)
[47] Touch/Motion Ac, Gy, Ma, El LSTM 84 0.37% 1.72%  8.47% v Is X
[31] Touch/Motion To, Ac, Gy, Ma, Or HMM 102 4.74% 398%  5.03% X X 8s SamsungG9208 (A-5.0.2)
[68] Wearable/Sensor dynamics Ac, Gy, Ma, Or, Li KRR 35 v 2.8% 0.9% v osnzas v GoogleNexus5 (A-4.0)
[107]  Wearable/Sensor dynamics Ac, Gy, Gr SVM 1,513 X X X 73.28% 95.57% 3.2s ComputerSimulation
[181]  Healthcare readings HWS SVM-RBF 37 2.6% 7.6% 9.6% v X v X

AdaBoost 37 2.4% 7.6% 8.4% v X v X

Ca: Camera, Mi: Microphone, To: Touch, Ac: Accelerometer, Gy: Gyroscope, Ma: Magnetometer, Li: Light sensor, Gr: Gravity sensor, El: Elevation

HWS: Healthcare Wearable Sensors, LDA: Linear Discriminant Analysis, HMM: Hidden Markov Model, GMM: Gaussian Mixed Model,

MLP: Multilayer Perceptron, RBF: Radial Basis Function, k-NN: k-Nearest Neighbor, PCA: Principal Component Analysis, SVM: Support Vector Machine,
FA-NN: Fast Approximate Nearest Neighbor, CNN: Convolutional Neural Network, FPOS: Frequent Pattern Outlier Score, KRR: Kernel Ridge Regression.

have moved from the unimodal to multimodal bio-
metrics. For instance, combining face recognition and
keystroke dynamics for user authentication enhances
the performance of each modality when considered
alone. However, recent trends in adopting biometric-
based authentication show it is also necessary to add a
sample-quality assessment module to the authentication
system, after the data collection and acquisition module,
in order to guarantee the processing of valid samples in
further processes.

3) Machine Learning-Based Authentication: Recent stud-
ies show the increasing reliance on machine learn-
ing techniques to implement authentication systems.
For multimodal-based methods, researchers utilize an
ensemble of machine learning models to enable multiple
pattern recognition per legitimate user. This can result in
a longer training time (i.e., extending the user enrolment
phase), greater model size and memory overhead, and
inference time (i.e., user authentication phase). All of
those are open directions worth exploring. Especially,
future authentication schemes should consider using
hardware acceleration units, such as GPUs or DSPs that
are available in most of today’s mobile devices.

IX. CONCLUSION

Mobile devices have become the most common platform for
communication and accessing the Internet. The rapid enhance-
ments of embedded technologies and resources of mobile
devices have enabled users to conduct varieties of activities
and transactions. Therefore, secure and accurate access con-
trol is essential. To date, mobile devices’ manufacturers have

implemented knowledge-based and physiological biometric-
based authentication methods as the primary access control
scheme. While both approaches offer simplicity, efficiency,
and precision, they assume the same level of security to
all applications and fall short on delivering authentication
beyond the point of entry. Moreover, these approaches require
overt recognition, where the user explicitly enters the pass
secret or the used biometrics, making them fail in delivering
implicit, transparent, and continuous authentication. Recently,
behavioral biometrics are used to offer efficient continuous
authentication on smartphones by leveraging the readings of
a variety of embedded sensors. This survey aims to high-
lights methods, approaches, benefits, and challenges associated
with using behavioral biometrics for user authentication. We
surveyed around 150 studies that conducted a behavioral-
based authentication and pointed out their used techniques,
sensors, performance measurements, and time needed for
authentication. As this field is rapidly evolving, there is still
a need to explore security-related aspects and implementation
considerations beyond familiar standards.
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