
Received November 11, 2021, accepted December 16, 2021, date of publication December 23, 2021,
date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137318

Investigating the Effect of Traffic Sampling
on Machine Learning-Based Network
Intrusion Detection Approaches
JUMABEK ALIKHANOV 1, (Student Member, IEEE), RHONGHO JANG 2, (Member, IEEE),
MOHAMMED ABUHAMAD 3, (Member, IEEE), DAVID MOHAISEN 4, (Senior Member, IEEE),
DAEHUN NYANG 5, (Senior Member, IEEE), AND YOUNGTAE NOH 1, (Member, IEEE)
1Department of Computer Science and Information Engineering, Inha University, Incheon 402-751, South Korea
2Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
3Department of Computer Science, Loyola University Chicago, Chicago, IL 60626, USA
4Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
5Department of Cyber Security, Ewha Womans University, Seoul 03760, South Korea

Corresponding authors: Youngtae Noh (ytnoh@inha.ac.kr) and Daehun Nyang (nyang@ewha.ac.kr)

This research was supported by Global Research Laboratory (GRL) Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (NRF-2016K1A1A2912757); National Research Foundation of Korea (NRF) grant funded by
the Korean government (MSIT) (NRF-2019R1F1A1059898, NRF-2020R1A2C2009372); and by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A4A1018774).

ABSTRACT Machine Learning (ML) based Network Intrusion Systems (NIDSs) operate on flow features
which are obtained from flow exporting protocols (i.e., NetFlow). Recent success of ML and Deep
Learning (DL) based NIDS solutions assume such flow information (e.g., avg. packet size) is obtained
from all packets of the flow. However, often in practice flow exporter is deployed on commodity devices
where packet sampling is inevitable. As a result, applicability of such ML based NIDS solutions in the
presence of sampling (i.e., when flow information is obtained from sampled set of packets instead of full
traffic) is an open question. In this study, we explore the impact of packet sampling on the performance
and efficiency of ML-based NIDSs. Unlike previous work, our proposed evaluation procedure is immune
to different settings of flow export stage. Hence, it can provide a robust evaluation of NIDS even in the
presence of sampling. Through sampling experiments we established that malicious flows with shorter size
(i.e., number of packets) are likely to go unnoticed even with mild sampling rates such as 1/10 and 1/100.
Next, using the proposed evaluation procedure we investigated the impact of various sampling techniques
on NIDS detection rate and false alarm rate. Detection rate and false alarm rate is computed for three
sampling rates (i.e., 1/10, 1/100, 1/1000), for four different sampling techniques and for three (two tree-based,
one deep learning based) classifiers. Experimental results show that systematic linear sampler - SketFlow
performs better compared to non-linear samplers such as Sketch Guided and Fast Filtered sampling. We also
found that random forest classifier with SketchFlow sampling was a better combination. The combination
showed higher detection rate and lower false alarm rate across multiple sampling rates compared to other
sampler-classifier combinations. Our results are consistent in multiple sampling rates, exceptional case is
observed for Sketch Guided Sampling (SGS) as it caused a drastic performance drop when sampling rate
was changed from 1/100 to 1/1000. Our results provide valuable insights for network practitioners and
researchers regarding on how packet sampling effects ML-based NIDS performance. In this regard full
source code for sampling and ML experiments has been released: github.com/Jumabek/sampledFlowMeter
and github.com/Jumabek/nids-with-sampling

INDEX TERMS Flow information export, network traffic sampling, intrusion detection, machine learning,
deep learning, CNN.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

I. INTRODUCTION
Networkmonitoring applications such as flow analysis, intru-
sion detection, and performance monitoring have become

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5801

https://orcid.org/0000-0003-3103-6033
https://orcid.org/0000-0002-3417-6851
https://orcid.org/0000-0002-3368-6024
https://orcid.org/0000-0003-3227-2505
https://orcid.org/0000-0001-5183-891X
https://orcid.org/0000-0002-9173-1575
https://orcid.org/0000-0002-0945-2674

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

increasingly popular owing to the continuous increase in the
speed and volume of network traffic [1]. Flow-based network
monitoring is favored owing to its efficiency over full-
packet-monitoring techniques such as deep packet inspec-
tion (DPI) [2]. Efficiency is achieved by inspecting the flow
records [3] instead of individual packets. The network load
owing to flow record collection and export (e.g., NetFlow)
is only 0.2% of the packet exporting technologies [2], [4].
However, with the increased volume and speed of internet
traffic even flow record export has become a challenge for
commodity devices (i.e., switch, router). This is because
processing each packet requires a certain bandwidth, mem-
ory, and CPU cycles of the measuring device. Therefore,
packet sampling is used to reduce the overhead of the flow-
information-measuring device [1], [5].

Flow-basedNetwork IntrusionDetection Systems (NIDSs)
use flow records as inputs and examine whether the specific
flow is normal or malicious [2]. Recent research has proposed
a large body of machine learning (ML) and deep learn-
ing (DL) solutions for flow-based NIDSs [6]–[13]. These
solutions have demonstrated promising results in terms of
their robust detection rates (DRs). However, to the best
of our knowledge majority of the state-of-the-art solutions
assume flow records are computed from full traffic, while
in practice they are collected from sampled packets. As a
result the success of state-of-the-art ML/DL based meth-
ods in practical scenarios is unknown. In this regard we
investigate the impact of sampling on ML-based NIDS
by considering real-world scenario (i.e., when sampling is
inevitable).

Track changes is on 3
Our proposed evaluation framework establishes a foun-

dation for the research on the domain of ML-based NIDSs
that consider practical scenario where sampling is inevitable.
Proposed procedure for accurate assessment of ML model
demonstrates the performance gains achieved by address-
ing data imbalance and emphasizes the importance of using
the right aggregation metric for multi-class classification
to avoid positively biased results. To achieve consistency
in the ground truth that is not affected by the presence
of sampling or configurations of flow export, we proposed
the usage of flow level (e.g., TCP connection level) eval-
uation. Next, by sampling packet capture (PCAP) traces
from CIC-IDS-2018 dataset we investigated the effect
of various sampling techniques on the visibility of cyber
attacks. Then, using the proposed evaluation framework, the
effect of sampling on NIDS is investigated where ML clas-
sifiers are evaluated on sampled flow records instead of flow
records obtained from full trace. Experimental results show
that even moderate sampling rates such as 1/10, 1/100 and
1/1000 results in 20%, 50% and 80% loss of flow visibility
respectively. Note, loss of flow visibility implies that NIDS
has no chance of analyzing the malicious flow. Insights
derived from this study paves the way for researchers in
understanding and further studying the effect of sampling
on ML-based NIDSs for ensuring the usability of ML-based

NIDSs even in the presence of packet sampling. In this
regard full source code for sampling andML experiments has
been released: github.com/Jumabek/sampledFlowMeter and
github.com/Jumabek/nids-with-sampling. Our contributions
in this paper, can be listed as follows:
• Evaluation framework for flow-level ML-based NIDSs:
(1) in contrast to findings in previous literature [14], the
time to train a convolutional neural network CNN) is
reduced by 3× using larger batch sizes without sacri-
ficing the performance, (2) a 42% higher detection rate
(DR) is achieved by addressing the training-data imbal-
ance, and (3) flow level evaluation framework is pro-
posed that is reliable even when the number of extracted
flow records varies owing to configurations of the flow
metering & export stage.

• Effect of sampling technique onmalicious flow visibility:
From the perspective of network security, we observed
that the linear systematic sampler - SketchFlow sam-
pling (SFS) is most applicable when target malicious
attack is formed from a longer flows, and the nonlinear
sketch-guided sampling (SGS) is suitable for attacks
with shorter flow length.

• NIDS on sampled data: The systematic linear SFS
sampler provides a higher DR and lower false alarm
rate (FAR) on multiple sampling rates. Hence, the most
suitable solution for NIDS is an SFS sampler paired with
random forest (RF) classifier.

• Effect of constrained flow cache on the NIDS: Exper-
iments show that under-dimensioned flow cache
(i.e., when switch memory becomes under-dimensioned
due to high traffic speed and volume) significantly
increases the resource usage for the NIDS. Intuitively,
this increase is caused by the increase in the number of
extracted flow records. The DR decreased significantly
when the flow cache is smaller than the working set of
active flows.

In this paper, we are using a few acronyms and readers are
referred to Table 1 for their definitions.

The paper is organized as follows. Section II briefly covers
the body of knowledge on traffic sampling, network intru-
sion detection in the presence of traffic sampling and ML
approaches for NIDS. Section III describes the deployment
scenario of NIDS within flow monitoring architecture and
its components. Section IV prepares a setting to conduct
experiments in Section Vwhich evaluates impact of sampling
on ML-based NIDS. Finally, Section VI concludes the study
with its limitations and future research directions.

II. RELATED WORK
In this section we review the related literature, make compar-
ison with our study and provide a discussion on our novelty
and contributions. Our study lies in the intersection of closely
related two subdomains: (1) studies that investigated NIDS in
the presence of sampling and (2) ML-based NIDS studies.
In the following two subsections we compare and discuss
novelty of our study in two aspects.

5802 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 1. List of abbreviations.

A. NIDS IN THE PRESENCE OF SAMPLING
Jun et al. [27] employed simple random sampling for detect-
ing distributed denial-of-service (DDoS) attacks. They iden-
tified four key criteria for detecting DDoS attacks over the
adopted packet-sampling algorithm. These criteria examines
1) if the number of sampled packets is larger than a threshold;
2) if the entropy of the flow-destination Internet protocols is
larger than a threshold; 3) if the source port entropy of a flow
is larger than a threshold; and 4) if the number of packets
per second is larger than a given threshold. Expanding the
guidelines to use sampling methods for intrusion detection,
Ha et al. [28] proposed a sampling strategy to ensure the total
amount of sampled traffic will not exceed the processing
capacity of an intrusion detection system.

Considering the sampling rate and its effect on
the performance of intrusion detection systems,
Androulidakis et al. [29], investigated if hybrid sampling
strategy improves NIDS performance. The authors achieved
better detection accuracy by using a strategy which samples
small flows with a constant sampling rate and dynamically
decreases the sampling rate as the flow size increases.

Some studies [30], [31] have demonstrated that the sam-
pling algorithm might introduce a bias towards the detection
of volume and port-scan attacks, resulting in a dramatic
decrease in performance. However, factors introduced by
the sampling methods on the performance of the intrusion
detection system can vary. Such factors can include the type
of sampling technique and the underlying design of the intru-
sion detection system [4]. Therefore, our research focused
on investigating the effect of different packet-sampling tech-
niques on intrusion detection.

Notably, Jazi et al. [32] investigated the effects of various
sampling approaches on the performance of application-layer
DoS attack detection. Jazi et al. proposed a non-parametric
cumulative sum (CUSUM) algorithm for intrusion detection
and investigated the effect of sampling. Their results demon-
strated that sampling, regardless of the sampling technique,

degrades the accuracy of detecting DoS attacks compared
with the accuracy achieved without sampling. Among the
various sampling methods, selective flow sampling and SGS
detected 84.61% of the attacks when a sampling rate of 20%
was adopted. By decreasing the sampling rate to 1%, Fast
Filtered Sampling (FFS) [22], and SGS achieved the best
DRs of 30.76% and 23.07%, respectively. Another significant
finding from this study was the effect of sampling rate on the
sampler performance. For instance, when flow sampling rate
was lower than 20%, SGS enabled a higher DR than the other
samplers. In contrast, when flow sampling rate was higher
than 20%, selective flow sampling enabled a highest DR.

Unlike previous methods that incorporate sampling for
(non ML-based) intrusion detection, this study aimed at
building ML-based intrusion detection system from flow
records that are obtained from sampled packets. In prac-
tice sampled flow records are exported (e.g., using Net-
Flow/IPFIX) from commodity switches. Focus of this study
was packet sampling techniques that are deployed in the
flow information export stage. Moreover, our ML exper-
iments considered a practical scenario where available
high-speed flow cache for measuring flow statistics is
under-dimensioned [1].

FIGURE 1. Scope of this study within NIDS literature.

B. FLOW-LEVEL ML-BASED NIDS
Domain of network intrusion detection has been extensively
researched. Our scope within NIDSs is visualized in Fig. 1.
Depending on the granularity of the inspected data, NIDS can
be categorized into packet based and flow based groups. Deep
Packet Inspection (DPI) is computationally expensive as it
examines each packet in detail. Furthermore, its effectiveness
is limited when the content of the packet is encrypted. Flow-
based NIDS is favoured for its effectiveness and its ability to
examine encrypted traffic. Our topic is to investigate effect of
packet sampling in flow-based NIDS which employML clas-
sifiers. Throughout the paper we are referring to flow based
NIDS whenever we mention NIDS. Another dimension to
consider for the classification of NIDSs is by the approaches
they use. Mainly, NIDSs employ machine learning-based or
rule-based (i.e.,SNORT [57]) solutions. Flow-level NIDS
approaches that employ machine learning can further be

VOLUME 10, 2022 5803

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

categorized in two main groups: Anomaly Detection (AD)
based and Misuse Detection (MD) based [33], [34]. AD
approaches capture activities deviating from normal profile.
Main advantage of AD approaches is the ability to detect
unseen attacks. However, they usually suffer from high false
alarm rate due to previously unseen but legitimate traffics.
On the other hand, MD based approaches aim to identify pre-
viously known attacks based on their signature and patterns.
They are effective for detecting the known types of attacks
but fail to recognize previously unseen attacks.

Mirksky et al. [35] developed Kitsune - AD based NIDS
that is comprised of ensemble of autoencoders. Kitsune can
efficiently detect attacks in an online manner while hav-
ing comparable performance to offline anomaly detectors.
Bovenzi et al. [34] proposed a lightweight anomaly detection
via designing novel multi-modal deep autoencoder. Proposed
autoencoder treats each categorical features as a separate
modality and achieves good performance while maintaining
a lightweight design for IoT scenarios.

This study focuses on MD based NIDS that operates using
flow information (records) with the emphasis on the effects
of traffic sampling. Although we are the first to investi-
gate the effects of sampling on flow-level ML-based NIDS,
in the following we make the comparison of our evaluation
procedure with recent works on ML-based NIDS that uses
misuse detection approach. Our criteria for the selection
was the studies with high number of citation or studies that
experimented with the same dataset (i.e., CIC-IDS-2018).
Overall comparison is shown in Table 2. In the following we
briefly review each study.

In order to obtain better feature representation prior
research exploited deep auto-encoders for building latent
feature representations [10], [11]. Their NIDS pipeline first
learns feature representation in a unsupervised manner from
unlabeled data. Then on labeled data supervised learn-
ing based classifiers such as Random Forest and Softmax
employed on learned representations. Another deep learning
based approach that learns latent representations for flow
is by Yin et al. where he proposed Recurrent Neural Net-
works (RNNs) by considering both binary and multiclass
settings. Authors also investigated impacts of the number
neurons in RNN and learning rate on model performance.
Their results outperformed other ML based classifiers such
as J48, ANN, RF and SVM on NSL-KDD benchmark.

One limitation of these studies so far is the usage of
outdated traffic (i.e., KDD or NSL-KDD) which is far
from modern network traffic patterns. To tackle this issue,
Sharafaldin et al. [12] collected CIC-IDS-2017 dataset
and extracted biflow features with their CICFLOWME-
TER [39] tool. In this dataset they evaluated candidate NIDS
classifiers such as K-Nearest Neighbors (KNN), Random
Forest (RF), ID3 implementation of Decision Tree (DT),
Adaboost, Multilayer perceptron (MLP), Naive-Bayes and
Quadratic Discrimant Analysis (QDA). Later, same research
group released CIC-IDS-2018 dataset which contains full
packet capture (PCAP) trace recorded on each machine.

Ferrag et al. [13] exploited this recent dataset as a bench-
mark and compared the performance of seven deep learning
algorithms in a binary and multiclass classification settings.
Alharbi et al. [37] proposed a novel approach for detecting
botnet attacks. Their experiments were also evaluated using
modern real-world dataset [38]. Authors proposed Local-
Global best Bat Algorithm that is used for hyper parameter
tuning and weight optimization of Neural Network. Their
target task was to classify the traffic as one of the ten different
Botnet attacks or as benign.

Next critical issue in the previous studies is the lack of
reliable evaluation procedure. Specifically, not addressing the
data imbalance in the training phase and misleading perfor-
mance aggregation in the evaluation. In other words, as shown
in Table 2, to the best of knowledge none of the previous
studies address data imbalance and used macro averaging
in multiclass classification. We experimentally show that
addressing data imbalance results in significant performance
gains. We also explain how using micro or weighted averag-
ing results in positively biased performance estimation (more
details in Section IV) and propose using macro averaging for
computing overall performance across multiple categories.

Another crucial aspect of previous evaluation procedure is
regarding the granularity in the definition of a flow. Previ-
ous research uses the flow records as a unit of evaluation.
However, generated number of flow records are inconsistent
when any of the components in flow metering stage changes
(more details in Section III).This includes the presence of
sampling. To solve this issue we first clarify the difference
between flow/connection and flow record in Section III.C.
We also propose flow/connection level evaluation procedure
in Section IV.E2 that is consistent irrespective of the param-
eters of flow metering stage.

Additionally, we would like to mention that Machine
Learning and Deep Learning is widely deployed in domains
such as autonomous driving [58]–[61]. As ML/DL solutions
are increasing so does the adversarial attacks on such models
are being developed. In this regard, Lal et al. developed a
technique for protecting deep learning based medical mod-
els such as diabetic retinopathy recognition from adversarial
attacks [62].

III. FROM SAMPLED PACKETS TO NIDS INFERENCE
Flow monitoring stages such as packet observation, flow
export, data collection, and data analysis are closely inter-
twined [1]. This section explains the deployment scenario
for NIDS, the effects of traffic sampling on NIDS and the
function of sampling within flow monitoring system.

Thus, we describe components and processes in detail. We
explain the stages from a packet arrival on the forwarding
device (e.g., switch), process for constructing flow record and
final NIDS inference on the flow record. A schematic view of
the components involved in the NIDS is depicted in Fig. 2.
We composed the system by following previous literature
[1], [5] where flow monitoring involves three stages: 1) flow
metering and exporting, 2) collection, and 3) analysis. The

5804 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 2. Evaluation framework of previous studies are compared. Criteria for inclusion is (1) studies with high citation and/or studies which used same
dataset (i.e., CIC-IDS-2018) with our work. We improve previous ML-based NIDS by (1) showing better ML performance through data imbalance handling,
(2) employ fair overall metric for comparison by using Macro averaging and (3) most importantly provide evaluation framework for NIDS in the presence
of sampling by introducing flow level metric.

flowmetering and exporting process is performed on a meter-
ing device (e.g., switch). Flow information (e.g., number of
packets, average inter-arrival time) is accumulated in the
flow cache and exported to the collector. Collector stores the
received flow records for further usage. Additionally, it sends
flow records to the monitoring applications such as NIDS for
real-time analysis. In the following subsections, we provide a
detailed description of each stage.

A. FLOW METERING & EXPORT
Flow metering is a process in which flow statistics such
as byte volume, packet volume, and inter-arrival time are
measured [5]. In a high-speed router, processing each packet
requires a certain bandwidth, memory, and CPU cycles of the
measuring device. For this reason packet sampling is used to
reduce the overhead of flow metering devices. This reduction
enables commodity devices to process sampled packets at
a line rate [17]. Flow export is the process of exporting
accumulated flow information (i.e., flow record) to collector.

1) FLOW METERING
In our experiments, flow metering was performed using
CICFlowMeter [39], a flow feature extractor tool. It collects
78 bidirectional flow features as shown in Table 4 by process-
ing the packet capture (PCAP) traces of CIC-IDS-2018.
The direction of the flow is identified using a 5-tuple (src-IP,
dst-IP, protocol, src-Port, dst-Port). Owing to the flow export
of the flow cache table, a single flow can be separated into
multiple flow records in the collector. Moreover, two distinct
flows may have the same flow ID (5-tuple) only separated by
time. Therefore, in our experiments, we additionally consid-
ered the start/end time of a flow as the flow ID to correctly
identify flows.

2) SAMPLING
Packet sampling is primarily used for reducing the workload
in flow metering stage. As a result only sampled packets
undergo flow metering process. In our experiments sampling
module is integrated inside CICFlowMeter. Each (incoming)
packet is examined by sampling module where only sampled
packets are further considered for flow metering. For our

experiment purposes we implemented four different sam-
plers: Simple Random Sampling (SRS), SFS, FFS and SGS.

3) FLOW CACHE AND FLOW EXPORT
Flow cache is a table which allocates an entry for each active
flow. Flow cache usually resides in the high speed TCAM
memory, in order to maintain millions of lookups per second
during the flow metering process. However, this type of
memory cannot be large because of the high price tag and
large power consumption. Thus, flow export is crucial for the
continuous operation of the cache table. Flow export stage
evicts the records of the expired flows and sends them to
collector. Additionally, if flow cache utilization reaches to
specified threshold, some portion of flow records are prema-
turely exported.

In NetFlow [40], flow is considered expired based on the
following rules. First, a flow record is naturally exported
when the FIN or RST flag packet is observed. Second, the
flow record is exported if it is inactive for a certain time
(i.e.,idle timeout) to save memory. Third, the hard timeout of
a flow also triggers an export event for the timely analysis of
elephant flows. Our implementation followed these rules.

It is noteworthy to mention that the presence of sampling
has impact on the flow expiration. For instance, natural flow
expiration with FIN or RST flags becomes unreliable if those
flag packets are not sampled. Similarly, idle timeout-based
expiration becomes inaccurate since sampling does not guar-
antee the two consecutive packets will be sampled. In our
experiments, exported flow records were saved into CSVfiles
and subsequently used to build and evaluateML-based NIDS.

B. FLOW COLLECTION AND NETWORK INTRUSION
DETECTION SYSTEM
Here we describe the procedure of collecting exported flow
records and their analysis by NIDS.

1) FLOW COLLECTION
When flow exporting process expires a flow, its record is
sent to collector. Collector then in turn stores it for log-
ging purposes and passes it to real-time monitoring tools
such as NIDS. It is important to distinguish the difference
between the flow collector and flow feature extractor in the

VOLUME 10, 2022 5805

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 2. Schematic view of flow monitoring architecture which is located between WAN and enterprise LAN. While packets are passing through, flow
information is accumulated in the switch from a sampled set of packets. Once flow finishes or the timer expires, an accumulated record of the flow is
exported to Collector. Collectors can store the records for the future and/or pass them to real-time monitoring systems such as NIDS. NIDS analyzes the
flow record and informs the firewall or network administrator if a record for that particular flow is found malicious. The key question here is how the
type and rate of the sampling technique affect malicious flow detection performance.

metering stage. The flow collector is similar to an archiving
database that stores flow records while the feature extractor
(i.e., CICFlowMeter in our setting) collects features for the
individual flow from incoming packets in the flow metering
stage. Readers might want to refer to [1] for more detailed
information on flow collectors.

2) NETWORK-INTRUSION-DETECTION SYSTEM
The NIDS receives a flow record from the collector and
examines whether the corresponding flow is malicious. The
scope of our study was a flow-level ML-based NIDS, which
consists of classifying each flow (i.e., record) as specific
malicious category or benign. Although some NIDSs can
inspect deterministic rules (i.e., signature-based) such as the
number of flows/packets passing through the observation
point) for port-scan attacks, they are out of the scope of this
paper.

In our experiment, the ML-based NIDS was trained
and evaluated on flow records that were extracted with
CICFlowMeter. For sampling experiments, flow records were
collected from sampled packets. Thus, the presence and type
of sampling has a direct and crucial effect on the overall
performance of the NIDS.

C. FLOW AND FLOW RECORD
Understanding the difference between flow (i.e., connection/-
conversation object) and flow records (i.e., traffic object) is

crucial for accurate evaluation of flow based NIDS. Unfor-
tunately, this difference is often overlooked, perhaps not well
understood. Understanding the underlying issues and propos-
ing a solution allows us to accurately assess the performance
of ML-based NIDS even in the presence of sampling.

In networking community a flow has multiple definitions.
RFC 2722 [41] defines traffic flow as ‘‘an artificial logical
equivalent to a call or connection.’’ According to RFC 3679,
A flow is a sequence of packets sent from a particular source
to a particular unicast, anycast, or multicast destination that
the source desires to label as a flow.Aflow could consist of all
packets in a specific transport connection or a media stream.
However, a flow is not necessarily 1:1 mapped to a transport
connection. Flow is also defined in RFC 3917 [42] as ‘‘a set of
IP packets passing an observation point in the network during
a certain time interval.’’

1) DEFINITIONS OF FLOW AND FLOW RECORD IN THE
LITERATURE
As a result based on the above definition it is not clear if
five-tuple (i.e., source IP, destination IP, source port, des-
tination port, transport protocol) is sufficient to identify a
flow. It is also not clear if the records extracted from flow
export tools (e.g., NetFlow) are 1:1 mapped to flow. In a
different but closely related domain of traffic classification
Dainotti et al. [43] highlighted the same issue by explaining
the different granularities of traffic flows. The granularity

5806 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

of traffic flows reflect the portion of the packet headers
analyzed to construct flow objects (i.e., records). As shown
by Dainotti et al. [43], single TCP connection may consists
of multiple flow/biflows. Authors define these flow objects
as follows:

• TCP connections: Heuristics based on the observation
of some TCP flags or TCP state machines are used to
identify the start and the end of each connection.

• Flows: A typical flow definition uses the 5-tuple which
consists of source IP, source port, destination IP, desti-
nation port and transport-level protocol. Some tools also
use a flow timeout (60 s or 90 s of idle time to delineate
the end of a flow) or periodic reset (e.g., timeout all flows
on a 5-min boundary).

• Bidirectional flows (biflows): Same as above, but
includes both directions of traffic, assuming both direc-
tions of flows can be observed.

2) REDEFINING FLOW AND FLOW RECORD ON
CIC-IDS-2018
Following Dainotti et al. [43], we differentiate the connec-
tion and flow object (i.e., flow record). However, instead
of flow/biflow object we use the NetFlow’s terminology of
flow record (objects). We also expanded the ‘‘TCP connec-
tion’’ [43] flow object type to ‘‘flow’’ which includes both
TCP and UDP conversation. CICFlowMeter extracts bidi-
rectional flow features (i.e., biflow records). Thus, unless
otherwise mentioned throughout the paper, we are using the
record and flow record terms to refer to bidirectional flow
records.

Generally, a flow (connection level flow ID) is defined
with 5-tuples. However, since CIC-IDS-2018 PCAP trace
is captured for the whole day it is possible to have more
than one connection for the same 5-tuples. For instance,
earlier during the day a TCP connection A starts and lasts
ten minutes, then later during the day a new connection B
with same 5-tuple starts and lasts some time. In such cases it
is difficult to distinguish two different connection/flow with
5-tuple. Therefore, after thorough explorative data analysis,
we verified that a 5-tuple on a given day’s PCAP trace is
unique. During this verification, for TCP, our heuristic was
TCP flags such as SYN, FIN, RST where single connection
should have single handshake. For UDP, we considered all
packets from 5-tuples as a single connection as long as there
is no large time interval between the two consecutive bursts.
During flow export stage, flow can be split into multiple sub-
records due to active/idle timeout or premature eviction that is
caused by under-dimensioned flow cache. In other words, for
a single connection multiple flow records could be exported.
Therefore, it is essential to distinguish the difference between
flow and flow record. In this regard we define the flow and
flow record as follows:

• Flow: A transport layer connection (TCP or UDP)
that is uniquely identified with 5-tuples with heuristics
such as TCP flags and sufficiently large gap between

two bursts for UDP. Our definition of flow maps 1:1 to
transport layer connection.

• Flow Record: a biflow object that consists of flow
properties for the given time interval. Properties such as
average packet size, total number of bytes is accumu-
lated with CICFlowMeter and exported in the form of
a record when one of the following condition occurs:
(1) active flow timeout - when flow was active for a long
time period and its partial record that is accumulated
so far should be exported for timely analysis; 2) idle
timeout - when flowwas inactive for certain period and it
should be exported for timely analysis; and 3) eviction -
when flow cache is under-dimensioned and last recently
updated flow records are kicked out.

IV. EXPERIMENTAL SETTING
In this section, we describe our experimental dataset, set-
tings used for flow cache and configuration for flow expi-
ration in the exporting stage. We explain the parameters of
the samplers and their settings for obtaining desired sam-
pling rate. Hyper-parameters and architecture of machine
learning classifiers also explained. We also introduce and
justify our metrics for assessing the classifier performance
and aggregation technique for obtaining overall repre-
sentative score. Finally, we explain our flow level eval-
uation procedure to evaluate NIDS in the presence of
sampling.

A. DATASET
Most commonly used dataset for evaluating NIDS per-
formance is KDD or its updated variant NSL-KDD [44].
However, these dataset contain outdated attack scenar-
ios with small scale. To address this issue recently
new datasets CIC-IDS-2017, AWS CIC-IDS-2018,
and DDoS 2019 were released [12]. Among them
AWS CIC-IDS-2018 contains the complete PCAP traces
of both benign and malicious network traffic. It also includes
schedules for malicious attacks. Hence, we adopted the AWS
CIC-IDS-2018 dataset for our experiments.

1) AWS CIC-IDS-2018
The dataset was constructed to convey the network traffic of
an organization that operates on 30 servers and 420machines.
Malicious attacks were performed by an attacker network that
consisted of 50 machines. Normal user behavior (traffic) was
simulated using ML techniques such as clustering. Thirteen
types of malicious attacks were captured within 10 days.
During the period incoming and outgoing trafficwas recorded
in each host machine. Consequently, a total of 450 × 10 =
4500 PCAP files were collected. In order to study the effect
of sampling, we need the PCAP traces to be recorded from
forwarding devices such as switch and router. Therefore,
wemerge each 450machine’s traces into single trace to obtain
equivalent of PCAP trace that is recorded in forwarding
device. As a result, we obtained ten merged PCAP traces for
each day.

VOLUME 10, 2022 5807

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 3. Per category distribution of network flows. Brute Force-Web*
attacks have equally short and long flows. In this context, short attack is
an attack where its flows have mostly small number of packets based on
the 3.

a: FLOW SIZE DISTRIBUTION
Flow size is the number of packets that belong to specified
flow. As explained in Section IV.C, probability of the packet
being sampled may differ depending on the (accumulated-
online) size of its flow. Therefore, the effect of sampling on
NIDS affected by the underlying flow size distribution of
the traffic and type of deployed sampling technique. In this
regard flow size distribution is shown in Fig. 3 where each
category is color coded. Graph conveys that size of the flows
for different cyber attacks vary where some flows are short
size while some are long. Interestingly, DDoS-LOIC-UDP
has both long and short flows.

b: CLASS DISTRIBUTION
As it is common in network-intrusion-detection datasets,
CIC-IDS-2018 is severely imbalanced (Table 3).
As Table 3 shows, attacks such as i.e., Brute-Force-Web,
Brute-Force-XSS, Infiltration and Sql-Injection have very
small numbers of flows compared with the DoS and DDoS
attacks (e.g., DoS Hulk with flow counts of 14,116).

2) DISTRIBUTION OF FLOW FEATURES
For extracting flow features we use CICFlowMeter [39]
which collects and extracts 78 features for the given flow.
Complete list of features with their distribution (i.e., mean
and standard deviation) is shown in Table 4. For more infor-
mation on the computation procedure and other details we
refer the readers to CICFlowMeter [39].

3) FLOW LABELING PROCESS
Since we are building misuse detection based NIDS our task
is a classification task. Classification is a supervised learning
problem which requires target (i.e., label) variable. Here
we discuss the procedure of obtaining target variable for our
dataset of choice. Note that our target parameter is the label
of each records.
CIC-IDS-2018 provides necessary metadata comprised

of flow IDs of malicious attack and their schedules. Such
information is sufficient to label each flow record with its
corresponding category (e.g., DDoS-HOIC). However, after

exploratory data analysis we found that in some instances
same Flow ID was used to execute more than one type of
cyber attacks.

For instance, assume that flow with ID 18.218.115.60-
172.31.69.28-53373-80-6 is first used to conduct the Brute-
Force-Web attack at 10:23:15 AM and Brute-Force-XSS
attack at 02:10:36 PM. As a result, without the attack sched-
ules, it is not possible to distinguish two different labels.
Therefore, for labeling a flow record, we considered attack
schedules in addition to the flow IDs.

Inaccurate attack schedules introduce noise to the data.
Consequently, derived analysis from noisy data would
become unreliable. Therefore, we carefully examined the
PCAP traces of CIC-IDS-2018 using Wireshark to see if
attack schedules corresponds to the timeline of malicious-
flow IDs. We found that slight inconsistency where certain
malicious flows lasted longer than provided schedules [45].
Thus, we provided our own updated attack schedules of
CIC-IDS-2018 in Table 5. Our goal here is to con-
tribute for the reliability of the future experiments on
CIC-IDS-2018 dataset. It is noteworthy to mention that
PCAP trace on Friday-02-03-2018 that is responsible for
Botnet attack was excluded from analysis for having too
many mismatch between the malicious flow ID and provided
attack schedules.

B. FLOW EXPIRATION AND FLOW CACHE SETTINGS
Flow features for active flows are accumulated as packets
in the flow cache until the conditions of flow expiration
are satisfied (Section III.A). Active timeout values range
from 120 s to 30 min, and idle timeout values range from 15 s
to 5 min [1]. In line with CICFlowMeter, for the timeout
values we used active timeout threshold of 120 s and the
idle timeout threshold of 15 s. Original implementation of
CICFlowMeter assumes enough flow cache is available so
that no record is kicked out prematurely. We follow the same
pattern and assume flow cache is unlimited. However, for
under-dimensioned flow cache experiment in Section V.D
fixed size is assigned to the flow cache. The size is computed
with respect to the ideal memory size. Ideal memory for each
PCAP trace is a flow cache memory that is enough to encom-
pass Working Set of Active Flows [46]. Ideal flow cache
memory for each of nine PCAP traces computed separately.
When flow cache becomes under-dimensioned, CICFlowMe-
ter kickes out (i.e., prematurely exports) the record from least
recently updated entry.

C. SAMPLERS
Here, describe and compare the samplers adopted in
our experiments. Additionally, their parameter settings for
obtaining the desired sampling rates is also explained.
We used 1 Mb memory for each sampler, as suggested
in the original studies [18], [47]. Comparison of samplers
in multiple dimensions is shown in Table 6. In terms of
complexity SRS is preferable as it does not need any extra
memory resources for per-flow counting. Additionally, SRS

5808 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 3. Flow size distribution of CIC-IDS-2018 per category whereas each category is distinguished by the color and marker. Flow size is the number
of packets within the flow. 95% of benign traffic flows have length less than 100. Majority of DoS-Hulk and Infiltration attacks are of length more
than 1000 which implies high flow visibility even with sampling rates of 1/1000.

guarantees constant sampling rate for any flow distribution
and does not require manual parameter tuning. In contrast,
other three samplers FFS, SFS and SGS require user to ini-
tialize some parameters before sampling. Assuming traffic
distribution is known, this involves experimentally trying
multiple values for each of the parameters. This procedure is
repeated until desired sampling rate for the given distribution
is obtained. For instance, in the case of SGS, we triedmultiple
values for error bound ε parameter until we achieved desired
sampling rate. In the following we describe of each individual
sampler and their selected parameter values that provided
desired sampling rate. Note, if flow size distribution of the
traffic changes, then overall sampling rate also changes. This
implies that in practice, it is difficult to guarantee constant
sampling rate across traffic for samplers other than SRS.

1) SIMPLE RANDOM SAMPLING (SRS)
SRS [15] is the most representative linear sampler that guar-
antees a constant sampling rate for any flow distribution.
SRS requires almost no memory as it needs a single counter
that counts between two sampled packets. SRS is included
in our experiments as a baseline sampler. The SRS strategy
involves counting from 0 until n. When counter reaches to n,
the n-th packet is sampled and counter is reset. After each
sampling, n is set to a randomnumber. In our settings, we used
sampling rates of 1/10, 1/100, and 1/1000.

2) SketchFlow SAMPLING (SFS)
SFS is included as a candidate per-flow sampler that pro-
vides approximately stable sampling rate for each flow. SFS
achieves this by approximately per-flow counting using the
novel compact data structure (i.e., sketch) [18]. Owing to
per-flow counting, SFS outperformed SRS in terms of accu-
racy [18]. However, due to the nature of sketching (approxi-
mate counting), SFS cannot obtain a precise sampling rate as

SRS. In our settings, we varied the number of layers and num-
ber of saturating bit parameters until desired sampling rate
approximated. Specifically, sampling rates of 1/10 is obtained
using one-layer sketch with five non-saturating bits), 1/100
is obtained using two-layer sketch with five non-saturating
bits), and 1/1000 is obtained using four-layer sketch with four
non-saturating bits).

3) SKETCH-GUIDED SAMPLING (SGS)
SGS is a nonlinear sampler that reduces the packet-sampling
rate as the online size of a particular flow increases. The
rationale behind the SGS design is that for elephant flows,
even small sampling rates sample sufficient number of pack-
ets to estimate flow information. Thus SGS strategy assigns
low sampling rate for large flows and large sampling rate for
small flows. As a nonlinear sampler, SGS cannot guarantee
constant sampling rate across distributions. Hence, we man-
ually attempted multiple values for the error bound parameter
to obtain desired sampling rates. We observed that ε = 0.05,
ε = 1, and ε = 11.5 results in sampling rates of 1/10,
1/100, and 1/1000, respectively. It is noteworthy to mention
that this parameters apply only for CIC-IDS-2018 traffic
distribution.

4) FAST FILTERED SAMPLING (FFS)
FFS assumes that small flows are the sources of anomalous
traffic. Hence, a filtering mechanism is introduced to thin
large flows in which packets are sent to the sampling module
only if they pass through the filtering module. The filtering
module counts flow sizes online and has two threshold values,
s and l, where s < l. If the flow size of the arriving packet is
smaller than s, the filtering module simply passes the arriving
packet to the sampling module. This allows higher sampling
probability for flows smaller than size s. If the flow size is
larger than s, the next arriving packets from the s-th to the

VOLUME 10, 2022 5809

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 4. List of features extracted by CICFlowMeter for CIC-IDS-2018. For each feature, mean and standard deviation is shown. Time based features
such as IAT, active/idle statistics are shown in seconds.

l-th values are dropped by the filtering module. When the
online counter of a flow reaches l, it is reset to zero to pass
the next s packets to the sampling module.
Although, other values for filtering thresholds could poten-

tially result in better flow visibility, we fixed threshold as
s = 8 and l = 16 by following the original work [22].
Otherwise, it would result in large number of trials while grid
searching the best possible combination of filters. After fixing
the filters, we set the sampling intervals for the SRS sampler
to si= 4, si= 40, and si= 400, which resulted in 1/10, 1/100,
and 1/1000 sampling rates, respectively.

D. CLASSIFIERS
We selected three machine learning classifiers, namely, deci-
sion tree (DT), Random Forest (RF), and CNN, as these are
widely studied in NIDS because of their reliable DRs [12],
[13], [48], [49]. Unless otherwise mentioned we used default
hyper-parameters for all three methods.

For DT, we used scikit-learn [50] implementation with
default hyper-parameter settings. According to default setting
each test split considers random

√
d features where d = 78

TABLE 5. Updated attack schedules for CIC-IDS-2018.

is the dimension of the flow-record features. Similarly, for
random forest (RF) we used scikit-learn [50] implementation
with default settings for hyper-parameters. Default setting

5810 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 6. Comparison of sampling techniques.

uses n = 100 tree estimators with bootstrapping. Hence, each
tree was constructed using 1% of the training data.

For the CNN model, we exploited the architecture pro-
posed for NIDS by Kumar [6]. Performance of DL model
can be improved through exhaustive hyper-parameter tuning
or searching for the optimal CNN architecture. Designing
another CNN architecture involves searching for the optimal
number of layers to use, kernel size of convolution and pool-
ing layers, usage of dropout, batch normalization, and number
of units in dense layers. Such process exhausts time and
computing resources. Additionally, it increases the carbon
footprint of this research [51]. Hence, we saved resources
and reduced carbon footprint by exploiting previously well
establish CNN architecture [6]. The CNN architecture con-
sists of two 1D convolution, one pooling, and two dense
layers. The convolution layers consisted of 64 filters with
1D kernel of size 3. The max pooling layer used a kernel
of size 2. The first and second dense layers had 2496 × 256
and 256 × 14 neuron units. We adjusted last layer to have
256×14 units because our dataset has 14 different categories
(13 malicious and one benign). Vinaya et al. used default
batch size provided in Keras library [52] that is 32. However,
as shown in the Section V.B we found that larger batch
sizes result in faster training time without degrading model
performance. After experimentally evaluating multiple batch
sizes we found that the batch size of 4096 provided fastest
training speed while having small FAR with comparable DR.
For the rest of the hyper parameters, we use default settings
such as adam optimizer, learning rate of 0.003, and weight
decay of 0.

E. PERFORMANCE METRICS FOR FLOW-LEVEL ML-BASED
NIDS
In the following, we first explain the metrics used to evaluate
sampler in the context of network intrusion detection. Then
we explain and justify our evaluation setup for NIDS in the
presence of sampling.

1) SAMPLER EVALUATION
Sampling affects NIDS in two main ways: (1) loss of flow
visibility and (2) loss of accuracy in estimated flow records.
For our definition of flow please refer to Section III.C.

a: FLOW VISIBILITY
We introduce a flow visibility metric to measure the per-
centage of flows that are remained visible after sampling.
If no packet from the flow is sampled, then no flow record
is exported. As a result, flow is not analyzed by the NIDS.
Flow visibility is a binary metric where it is either observed
or not. Visibility is 100% when at least one packet is sampled
which ensures a flow record is generated for a given flow. It is
0% if no packet is sampled from that flow and consequently
no flow record is exported.

b: FLOW-RECORD QUALITY
When estimating the flow information from sampled packets,
quality of a record is degraded due to loss of data. This
in turn leads to decreased ML classifier performance when
learning to distinguish between the different types of attacks
or benign traffic. Therefore, if certain sampler provides rela-
tively higher quality flow record, then it contributes to better
NIDS performance. In other words, if same NIDS classifier
was build on two different flow records that correspond to two
different sampling techniques, then the sampler that resulted
better NIDS performance implies that sampler is more suit-
able for NIDS purpose than its counterpart. Hence, we do not
have exclusive metric for flow-record quality evaluation, but
infer it from NIDS performance.

2) NIDS EVALUATION IN THE PRESENCE OF SAMPLING
a: CROSS VALIDATION
InML community, Cross Validation (CV) is used for reducing
the bias introduced when splitting small dataset. Although
CIC-IDS-2018 is a large dataset, we still need CV for two
reasons. First is the presence of small categories. As shown
in Table 3, attacks such as Infiltration and SQL injection have
only 5 and 50 flows. Second is the loss of flow visibility
after sampling. In other words, in the presence of sampling
number of flows per category decreases even more. Another
important consideration when conducting CV is to ensure
flow records of the same flow does not end up across multiple
splits. Therefore, standard CV implementations of available
tools such as scikit-learn [50] is inapplicable in this sce-
nario. Thus, we used our custom CV implementation that
ensures flowswithmultiple records stay in the same split. Our

VOLUME 10, 2022 5811

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

implementation also ensures equal class distribution across
folds as an equivalent of Stratified KFold.

b: MACRO AVERAGING
In multiclass classification, a single evaluation score needs to
be computed in order to evaluate the overall performance of
a classifier. When performing such aggregation, a care must
be taken as there are multiple different ways to aggregate.
Especially, when class imbalance is present, performance
aggregation becomes evenmore trickier. There are three main
way to average the scores of multiple classes:
• global/micro averaging where class information is dis-
regarded and score is computed for each instance then
averaged.

• weighted averaging considers frequent categories as
more important. First, scores for each class is computed,
then weighted average is taken. This type of averag-
ing assigns weight to each class in proportion to their
frequency.

• macro averaging treats each class equally important.
First, scores for each class is computed then averaged
considering each class/category as equally important.

Example usages on global averaging [11] and weighted
averaging [12] can be found in the related literature. How-
ever, we could not find any study that highlighted the data
imbalance issue and how it can be the source of many pitfalls
with wrong type of averaging. We argue that when data is
imbalanced, global or weighted averaging provides a false
impression that the classifier is accurate. In other words,
such averaging provides high overall score even if the only
frequent categories are well distinguished and many small
categories are poorly classified. This is especially the case if
train data is also imbalanced which naturally leads to classi-
fier that is biased towards frequent categories when making a
decision. We propose to considering all categories as equally
important. Hence, we suggest macro averaging when obtain-
ing overall performance of the classifier by aggregating its
performance across multiple classes.

c: CLASSIFIER EVALUATION METRIC
Multiclass attack classification can be evaluated with dif-
ferent metrics such as accuracy, precision, recall, F1-score,
true positive rate, true negative rate and false alarm rate [37].
Our evaluation derives flow level metrics from record level
inference. Hence, we resort to simplest yet meaningful met-
rics such as detection rate and false alarm rate. Detection
rate for the specific malicious category is the percentage of
the correctly predicted flows over the total number of flows.
Overall detection rate is a metric that is aggregated across
multiple malicious categories with macro averaging. False
alarm rate is the percentage of benign (i.e., normal) traffic
that is confused with malicious categories.

When sampling is present, only percentage of flows will
be observed. One way to compute detection rate and false
alarm rate is to consider number of observed flows for each
category as ground truth (i.e., total number of flows). In such

setting, detection rate of NIDS that can detect all the flows
that it sees is 100%. However, as we are evaluating the effect
of sampler in NIDS, evaluationmetric should reflect the flows
that are not observed due to loss of visibility. Therefore,
our ground truth is all the flows in the complete traffic as
opposed to observed flows after sampling. As an example,
lets assume only 30% of the DDoS-LOIC-UDP attack is
observed after sampling where packet sampling rate was
1/10. Then, in our evaluation setting, NIDS that can identify
100% of the observed flows for the given attack has only
30% detection rate. Consequently, in this setting, a sampler
that samples less benign but more malicious flows positively
affects NIDS performance and considered favorable.

d: DERIVING FLOW LEVEL METRIC FROM RECORDS
For the given flow, multiple records can be extracted depend-
ing on the flow expiration settings of exporting stage (more
details in Section III.C). This behavior is influenced by
flow cache settings for flow expiration and when flow cache
becomes under-dimensioned. Similarly, presence of sampling
also affects the flow expiration policy. For instance, number
of generated flow records can increase due to the effect of
sampling on idle timeout-based expiration. This is because
due to sampling time gap between two sampled packets
is larger than previous time gap between two consecutive
packets. Hence, because of this inconsistent number of data
units, flow record cannot be used as a unit of data for eval-
uation. Number of flows on the other hand is consistent
and not affected by the configurations of flow metering and
export stage. Therefore, we propose our flow level evaluation
metrics. It is noteworthy to mention that in the deployment
scenario, the classifier performs inference for each arriving
record in real time. Therefore, in line with the previous work,
our input to NIDS is flow record, but our evaluation is on flow
level.We propose the following procedure to derive flow level
evaluation metrics from record level inferences.
• Any DR: if any of the records belonging to a flow is
predicted correctly, the flow is considered to be detected.
If none of the records predicted correctly, then most
commonly predicted category is assigned to a flow.

• Majority DR: flow is considered detected as long asmost
commonly predicted category for its records is correct.

• All DR: if all of the records belonging to a flow are
predicted correctly, only then the flow is considered to
be detected.

Any DR is suitable metric for post attack analysis where
real-time detection is not important. In other words, for
logging purposes detecting at least one candidate record of
the flow can sufficiently pinpoint the malicious flow ID. For
real-time detection, the All DR metric may be preferred as
it allows the attack to be captured as soon as first record
arrives to NIDS. However, in some cases, especially in under-
dimensioned flow cache scenarios [1], a flow may have too
many records. In such settings each record is computed over
a short period from a small number of packets. As a result,
it is inevitable to have some records with very low quality.

5812 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

Hence, All DR scenario can be considered too harsh. There-
fore, as tradeoff between Any DR and All DR, we propose
Majority DR as a flow level metric. Hence, unless otherwise
mentioned, our ML experiments were evaluated using the
Majority DR metric.

Flow level FAR is computed from flow level DR and
flow visibility rate (v) for the benign category. Here,
lower flow visibility for the benign category helps NIDS to
achieve low FAR.
• Any FAR (fany) metric is derived fromAnyDR of benign
category and is proportional to flow visibility rate of
benign category:

fany = (1 - dbenignany)vbenign (1)

where d corresponds to detection rate and f corresponds
to false alarm rate.

• Similarly, Majority FAR (fmajority) is derived from
Majority DR of the benign category and is proportional
to flow visibility:

fmajority = (1 - dbenignmajority)vbenign (2)

• All FAR (fall) is also derived from All DR of Benign
category and is proportional to flow visibility:

fall = (1 - dbenignall)vbenign (3)

V. EXPERIMENTS
Our experiments consisted of four parts. First, we explore
how flow visibility is affected by the choices of sampling
technique and sampling rate in the metering process. Second
we evaluated NIDS performance in using the proposed flow
level evaluation metric. Performance gain after addressing
data imbalance and training speed up of CNN using larger
mini-batch sizes is demonstrated. Third, we investigated the
performance of each sampling method with different NIDS
classifiers. Finally, we investigated the effect of the con-
strained flow cache on the NIDS in terms of performance
and resource usage. Constrained flow cache has small table
size that cannot store all the Working Set of Active Flows
(WSAFs) [46].

A. FLOW VISIBILITY
When sampling is employed in the flowmetering and export-
ing stage, the flow becomes invisible if none of its packets
are sampled. The loss of flow visibility is critical as it implies
that no flow record is exported. This in turn implies NIDS
does not have the visibility for the flow. Here, we investigated
the following two questions: (1) How are different types of
malicious traffic affected by sampling on different sampling
rates? (2) How do sampling methods compare against each
other? In this regard we sampled the traffic data using four
different sampling techniques for the three sampling rates
of 1/10, 1/100, and 1/1000. The corresponding records were
then accumulated from the sampled packets. The correspond-
ing flow visibility of each malicious-flow category on the

four samplers across the three sampling rates are shown in
Fig. 4. Each row corresponds to a separate sampling rate.
The dataset contained 13 types of malicious flows, which are
positioned on the x-axis in ascending order based on their
average flow observation rate. Additionally, as an aggregated
metric for inter-comparisons between samplers, we also pro-
vide a macro averaged observation rates for the 13 malicious
categories.

1) OBSERVATIONS
Overall, the graph shows that even mild packet-sampling
rates, such as 1/10, result in a significant loss of information.
For instance, at a 1/10 sampling rate, only approximately
50% of normal flows were observed and, on average, 80%
of malicious flows were observed. An interesting observation
was that malicious flows were more visible than normal
traffic. This was true for all three sampling rates and sampling
techniques.

In detail, we observed the following. First, the systematic-
approximate-linear sampler SFS had high visibility for long
flow attacks, whereas nonlinear SGS achieved better visi-
bility for short-length malicious flows. Second, the higher-
flow visibility of the sampler depended on the sampling rate.
In particular, the average malicious observation rates of both
SFS and SGS were better than the baseline SRS at a 1/10
sampling rate. However, at sampling rate of 1/1000, SGS
ranked lower than the baseline, while SFS still ranked better
than the baseline sampler. Third, owing to its design nature,
SGS attempted to capture all types of flows regardless of their
size and achieved similar flow visibility in both short and long
flows.

2) INSIGHTS
We can conclude that evenmild sampling rates, such as 1/100,
have a drastic effect on malicious-flow visibility. However,
if sampling is inevitable, flow visibility can be improved by
selecting the sampling technique which is suitable for the
target intrusive attack based on its flow length. For instance,
if short-length malicious flows are the main source of net-
work attacks, a nonlinear SGS sampler is a good candidate.
If targeted malicious have longer flow lengths, the linear
samplers such as SFS are more suited to the task. The rel-
atively better performance of the SFS over baseline SRS can
be explained by its superior accuracy owing to per-flow
sampling.

B. EVALUATION FRAMEWORK FOR A FLOW-LEVEL
ML-BASED NIDS
Proper evaluation framework ensures the validity of experi-
mental comparisons. In this regard we proposed flow level
evaluation metric in Section IV.E that is not affected by
the changes in flow metering process. Our framework, also
allows us to investigate the effect of sampling.

Here, we exploit the established metric for the compari-
son of ML techniques. To speed up CNN training we first
investigate the effect of batch size on training time and model

VOLUME 10, 2022 5813

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 4. Flow visibility rate after sampling. y-axis represents per category flow visibility - percentage of flows retained after sampling. x-axis represents
attack types that are positioned in ascending order based on their overall flow visibility rate. Sampling rate is reduced from 1/10 to 1/1000 with the
factor of 10. Four different samplers (i.e., SGS, FFS, SRS, SFS) are color-coded.

performance. Then we demonstrate the performance gain
achieved by addressing data imbalance in training phase.
Results herein concern non-sampled flow records and can
be used later in the section as a reference to compare the
performance drop when sampling is present.

Insights from these experiments add knowledge to the
NIDS domain. Concretely, we (1) successfully reduced the
training time of CNN model by selecting a larger training
batch size without the loss of performance, (2) achieved
up to 42% better DR and a 50% lower FAR by addressing
data imbalance in the training set, and (3) provided fair
comparisons of ML methods using the proposed flow-level
evaluation metric.

1) EFFECT OF TRAINING BATCH SIZE OF CNN
Training CNNs on large data is time consuming. Using large
batch sizes speeds up training by leveraging the parallel
processing power of GPUs. However, previous studies sug-
gested that large batch sizes reduce the performance of CNN
models [14]. We posit that this is not necessarily valid for the
NIDS task, in which flow features are low dimensional and
heterogeneous. This is in opposition to image pixels that are
high dimensional and homogeneous. Hence, in the following
section, we explore the function of batch size in the training
of a CNN model. Note this is only possible after having
reliable flow-level evaluation metric which is discussed in
Section IV.E. Fig 5 shows the reduction in training time as
we increase the batch size. Additionally, figure shows there
is no relationship between increased batch size and decreased

model performance (i.e., DR and FAR). Exact performance
metrics are also shown in Table 7. The results are shown
for the three different data balancing settings to demonstrate
generalizability of the observations.

a: OBSERVATIONS
The results demonstrated that large batch sizes do not
decrease the performance of CNN models on NIDS tasks.
This holds true even when different balancing techniques are
used. We also observed that there is no correlation between
batch size and CNN model performance.

b: INSIGHTS
Our finding contrasts studies on computer vision communi-
ties [14]. This controversy can be explained by differentiating
the input data of the two tasks: image and flow record. In the
image domain, the dimension of image features (i.e., pixels)
is at a minimum of 784 for small 32×32 resolutions. In con-
trast, our flow record consisted of 78 features. Additionally,
image pixels are homogeneous, while flow features are het-
erogeneous. It is heterogeneous because some features are in
the units of time while others are in count, and some features
such as destination port and transport protocol are categorical.

2) IMPORTANCE OF DATA BALANCING
Training on imbalanced data would result in the model being
biased toward frequent categories. However, previous studies
on ML-based NIDS, such as [7], [10]–[12], [36], [49] did not
address this problem. In such a setting, performance metrics

5814 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 5. Training time of CNN for different batch sizes. CIC-IDS-2018
has 92,183,595 flow records and 4:1 train/test split is used. For each batch
size training is done for 20 epochs. Detection rates are color-coded while
magnitude of False alarm rates is depicted with the sizes of bubbles.

TABLE 7. Effect of batch size on CNN model performance using majority
flow detection metric. Detection rate (DR) and false alarm rate (FAR)
comparisons are provided for three different data balancing techniques.

can indicate a false impression that the ML model has a high
performance. This problem becomes even more dramatic if
global (i.e., micro) or (even worse) weighted averaging of
performance scores are used (more details in Section IV.A).

To solve the data imbalance problem, the ML community
primarily employs two approaches. The first is to assign a
distinct cost to training examples based on the frequency of
each class. The second is to re-sample training data by either
over- sampling a small class or under- sampling the majority
class [53], [54]. In a subsequent experiment, our aim was
to indicate the performance that is lost in previous studies
when data imbalance was neglected. We demonstrate this
by comparing two balancing techniques against imbalanced
setting. In each scenario, the ML classifier parameters were
the same as described in Section IV.D. Data balancing was
only applied to the training set.

As the first balancing technique, we considered under- and
over- sampling [54]. From now on we use the term explicit
balancing instead to eliminate the confusion with packet
sampling. Small malicious categories are over- sampled to

be equal in size to the most frequent malicious category.
Benign records were under- sampled to be in equal size to
the malicious categories.

Second balancing technique we considered is cost-based
balancing (i.e., cost sensitive learning. This technique modi-
fies the optimization function to penalize more heavily when
examples from infrequent categories are misclassified. For
the DT and RF classifiers, we used scikit-learn [50] imple-
mented interface by passing the weights of each class. For
the CNN, we achieved cost-based balancing by passing class
weights as an argument for the cross-entropy objective func-
tion in Pytorch [55]. Same balancing technique was used in
traffic classification task by Aceto et al. [56] as well. Using
the cost-based balancing, authors mitigated learning diffi-
culty caused imbalanced data. Thus uniformmisclassification
rate is achieved.

Finally, to demonstrate the importance of balancing,
we included the results for the no-balancing scenario. Table 8
presents the experimental results for the different balancing
techniques.

a: OBSERVATIONS
The results demonstrated that the data balancing technique
has a significant effect on the performance of the ML clas-
sifier. Although the cost-based balancing and no-balancing
setting had no remarkable difference, explicit balancing was
consistently better than no balancing on all three classifiers
with a largemargin. The RF classifier is known for effectively
managing imbalanced datasets [48]. However, surprisingly,
the balancing technique selected also has notable importance
for RF. For the similar FAR, random forest with explicit
balancing had 98.31% DR, while for cost-based balancing
only 69.08% DR is achieved.

b: INSIGHTS
Major insight here is that without the careful design of the
evaluation setting, fallacious conclusions can be derived. For
instance, when data imbalance is not addressed one may con-
clude that the DT classifier has a high DR of 78.62%, whereas
its more sophisticated predecessor RF has a 68.92%DR and a
0% FAR. However, here, neither classifier achieved its poten-
tial performance owing to data imbalance issue. Hence, such
comparison leads to wrong conclusion. Another surprising
insight is that cost-based balancing did not provide notable
improvement as opposed to explicit balancing. Moreover, for
tree-based classifiers(i.e., DT and RF), the data imbalance
problem can be converted into an advantage if reducing the
FAR is the first priority.

3) COMPARISON OF CLASSIFIERS
Although different ML methods have been proposed previ-
ously, their reliable comparison on CIC-IDS-2018 dataset
in flow level is missing. In Table 9, we provide the DR
and FAR comparisons of the three most popular classi-
fiers that are used for NIDS. The results are shown for all
three flow level detection metrics proposed in Section IV.E.

VOLUME 10, 2022 5815

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

TABLE 8. Effect of data balancing on ML-based NIDS performance.
Comparisons are provided using flow level Majority DR and Majority FAR
metrics. Experiments include three different cases of data balancing.

For the training phase, explicit balancing was employed, and
the other hyperparameters were the same as described in
Section IV.D.

a: OBSERVATIONS
For all three flow-level detection metrics, RF had better or
comparable performance, except for the All metric, for which
the CNN had a higher DR but suffered from high FAR.
As explained in Section IV.E, Any and All metrics were too
extreme. Hence, we recommend referring to the Majority
metric for the comparison of different models. Hence, RFwas
considered the most suitable because it had a high DR of
98.31% and an FAR of 0.01% on Majority DR and Majority
FAR metrics.

TABLE 9. Detection rate (DR) and false alarm rate (FAR) comparisons of
three classifiers on non-sampled flow records. Results are provided for
three flow level evaluation metrics. Train data is balanced using explicit
balancing.

C. FLOW-BASED NIDS ON SAMPLED DATA
Here, we investigate how the presence of sampling affects
NIDS performance in terms of flow level Majority DR and
Majority FAR metrics. Four different sampling techniques
are compared for their suitability for NIDS application. Our
ML experiments are done in three different ML classifiers
(i.e., DT, RF, CNN). As a result each of three classifiers
are evaluated on four times on different data. Different data
corresponds to flow records extracted in the presence of dif-
ferent sampling techniques. In addition to suitable sampler for
NIDS, this setting enables us to observe which classifier and

sampler are a good pair. Experiments are repeated three times
for sampling rates of 1/10, 1/100, and 1/1000. This allows
us to explore the effect of sampling rate. It is noteworthy
to mention that based on the definition of our metrics in
Section IV.E, FAR cannot exceed benign flow visibility rate.

Fig. 6 shows the performance of the ML classifiers on each
sampling method. The first and second columns show the
DR and FAR, respectively, whereas each row corresponds
to different sampling rates. ML classifiers are color-coded.
One-way ANOVA test is conducted to verify the difference in
the performance of ML methods are statistically significant.
Each cell in Table 10 corresponds to separate test. ANOVA
test quantifies if at least one of the three classifiers have
significantly different mean detection rate. According to test
results, almost each comparison has at least one ML classi-
fier with statistically significant difference (i.e.,low p-value).
This applies for both Majority DR and Majority FAR met-
rics. Exception is observed for SGS (p = 0.167) and SRS
(p = 0.656) on sampling rate of 1/100 for Majority DR.

b: COMPARISONS ON MULTIPLE THRESHOLDS
To compare classifiers in multiple cut-off points (similar to
ROC curve), above evaluation procedure was repeated in ten
different benign thresholds. In previous experiment, benign
and other thirteen malicious categories were treated the same
where a category with the highest probability was assigned
to a flow record. We apply the given benign threshold on
a record level as NIDS returns the estimated probability of
each category for the given record and not the flow itself.
If the predicted probability of that record for the benign
class is larger than the threshold, then we assign the label
‘benign’ to that record. Otherwise, the malicious attack cat-
egory with the highest probability is assigned. Once records
are assigned with their corresponding labels, then flow level
metric is derived using the ‘Majority’ procedure explained
in Section IV.E. Results for multiple threshold comparison is
shown in Fig. 7 and Fig. 8.

c: OBSERVATIONS
At a high level, we observe that sampling had the dis-
advantage of increasing the FAR by orders of magnitude.
For instance, for a sampling rate of 1/10 and RF classifier,
we observed, at best, a 0.5% FAR for the SFS sampler
as opposed to a 0.01% FAR on non-sampled data, which
was 50 times better. For the same SFS and RF pair, at a
sampling rate of 1/1000, an FAR of 0.03 % was obtained, but
at the expense of missing out 85% of the malicious flows.

When comparing classifiers, we can observe from the
results that, for any given sampling rate, RF has a higher DR
with a better or comparable FAR. Another observation is that
on low sampling rates such as 1/1000, the selected classifier
has a relatively minimal effect for a particular sampler.

For the harsher sampling rates, the best pair was the SFS
sampler with the RF classifier. Specifically, at a 1/10 sam-
pling rate, SFS had a high DR (80%) with a comparably low
FAR (0.5%), and at 1/100, SFS had the third-highest DR,

5816 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 6. Performance of ML classifiers on a given sampler. x-axis represents choice of sampler deployed during flow information export. y-axis
represent DR and FAR. FAR is reduced as harsher sampling rates used. flow records are obtained from sampled packets which sampling rates of 1/10,
1/100 and 1/1000. Simple Random Sampling (SRS), Fast Filtered Sampling (FFS), SketchFlow Sampling (SFS) and Sketch-Guided Sampling (SGS) samplers
are color-coded.

TABLE 10. One-way ANOVA test for significant difference between the means of different ML classifiers. Each cell corresponds to separate ANOVA test
conducted over three classifiers trained and evaluated on sampled flow records. Those flow records are extracted in the presence of corresponding
sampler.

but the best FAR at 1/1000. Hence, SFS had both a high DR
and a lower FAR. Perhaps, an undesirable sampler for NIDS
is SGS, as its corresponding FAR continued to worsen as
higher sampling rates were applied. In particular, at a 1/1000
sampling rate, SGS had an FAR that was twice as large as that
of SFS but also had a lower DR.

d: INSIGHTS
A significant increase in the FAR suggests that sampling
significantly reduces the quality of the features. This insight
should be considered when network or data center operators
decide whether to buy hardware or employ sampling.

If sampling must be employed, per-flow systematic sam-
plers such as SFS should be favored over the baseline SRS
or nonlinear samplers such as SGS. This could be explained
by their systematic nature for measuring features such as the
inter-arrival time between two packets.

D. EFFECT OF CONSTRAINED FLOW CACHE ON NIDS
Many flow exporters have fixed-size flow caches. When this
size turns out to be small (under-dimensioned), flow data
loss or low performance can be the result [1]. In this study,
we explored the effect of under-dimensioned flow cache from
the perspective of real-time NIDS. If the flow cache is not
sufficiently large, all of its entries are occupied at some point,
and there is no room to create a new entry for the incoming
packet of a new flow. For our setting, when the flow cache
is full, the least recently updated flow record is kicked out.
Kicked-out records are still sent to the collector, and the
collector then passes the record to the NIDS in real time.
However, such a scenario creates a problem in which there are
now more records to analyze, and the quality of each record
is degraded because it is estimated from fewer packets.

For instance, assume flow f1 has two packets that have a
smaller inter-arrival time than both active and idle timeouts.

VOLUME 10, 2022 5817

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 7. Corresponding evaluation curve for Majority DR on multiple benign thresholds for the results shown in Fig. 6.

Subsequently, let us assume two flow cache scenarios: one
with unlimited flow cache size and second with constrained
flow cache. In the former, a single corresponding record
r1 is extracted as normally. In the latter, before the second
packet of the flow f1 arrives, the flow cache becomes under-
dimensioned, and to make empty entry for new incoming
flow f2, record r11 of flow f1 is prematurely kicked out. When
the second packet of flow f1 arrives, a new record r21 is formed
and later exported. We posit that the quality of both r11 and r21
records are lower than that of a single extracted record r1 in
the first case.

In summary, under-dimensioned flow cache generates
more flow records due to premature kickouts. It also causes
flow records to be less accurate. This in turn leads to degra-
dation in NIDS performance and higher computing resource
consumption by NIDS. In the following, we first quantify
how theDR ofNIDS is affectedwhen the flow cache becomes
under-dimensioned. Next we analyze how CPU resource
usage time increases as a function of the number of extracted
flow records.

Our setting for this experiment was as follows. We found
the ideal flow cache size for each of the nine PCAP traces of
CIC-IDS-2018. Here, ideal cache size was the minimum
number of table entries that was sufficient to store all working

sets of active flows in the flow cache until they were naturally
(not prematurely) exported. We considered ideal cache size
as 100%. Subsequently, we reduced the flow cache size from
100% to 0.1% with a factor of 10 to simulate the constrained
scenario. For each of four (i.e., 100%, 10%, 1% and 0.1%)
cache size, four different flow records were extracted. They
correspond to four different samplers that were deployed in
flow metering stage.

We assumed that the training phase of ML classifier was
performed on the flow records that were extracted when the
flow cache size was sufficient (i.e., 100%). Therefore, flow
cache size affected NIDS only during inference phase and
not in training phase. RF was used as a candidate NIDS
classifier due to its superior performance over DT andCNN in
Section V.C. To quantify inference time, we assumed that the
NIDS made inferences for each flow record individually and
had no parallel processing functionality. Our scikit-learn [50]
implementation of RF used a single CPU core for infer-
ence. The system had an Intel(R) Xeon(R) E5-2640 v4 @
2.40-GHz CPU with 40 cores and 64 G RAM.

1) EFFECT ON THE NIDS DETECTION RATE
Fig. 9 shows the effect of a constrained flow cache on the
NIDS DR for four scenarios in terms of the proportion of the

5818 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 8. Corresponding evaluation curve for Majority FAR on multiple benign thresholds for the results shown in Fig. 6.

FIGURE 9. Impact of under-dimensioned Flow Cache on NIDS Detection Rate: Each subfigure corresponds to different sampling rates. x-axis depicts
flow-level detection rate with majority metric. y-axis shows the flow cache size as the percentage of ideal size. Simple Random Sampling (SRS), Fast
Filtered Sampling (FFS), SketchFlow Sampling (SFS) and Sketch-Guided Sampling (SGS) samplers are color-coded.

packets used to estimate flow records at the sampling rates
of 1/1, 1/10, 1/100, and 1/1000. The sampling rate 1/1 is
equivalent to no sampling.

a: OBSERVATIONS
Overall, we observed that the constrained flow cache
degraded the NIDS DR the most when no sampling was

VOLUME 10, 2022 5819

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

FIGURE 10. Impact of under-dimensioned Flow Cache on NIDS Recourse Usage (Inference Time). Ideal flow cache size is the minimum size that ensures
no active flow is prematurely kicked out during measuring process. Flow cache size is varied between 100% to 0.1% with 10 times decrease interval
where 100% refers to ideal flow cache size that is just enough to measure flows without premature kickout. Simple Random Sampling (SRS), Fast Filtered
Sampling (FFS), SketchFlow Sampling (SFS) and Sketch-Guided Sampling (SGS) samplers are color-coded.

used. In particular, when the flow cache was 0.1%, the WS
scenario had a DR of less than 60%, whereas samplers with
1/10 sampling rate had DRs higher than 60%. At the 1/10
sampling rate, the DR of each sampling method decreased
slightly for flow cache of sizes 1% and 0.1%, except for the
SGS. Intuitively, flow cache size had almost no effect on low
sampling rates.

b: INSIGHTS
When the flow cache is under-dimensioned, it seems better
strategy is to apply sampling with carefully selected sampling
rate that will keep the DR relatively higher. This is because
the use of sampling has fewer premature kick-outs, which
preserves the flow-record quality relatively better. However,
the sampling rate should be set very carefully as excessively
harsh sampling rates may not fully utilize the flow cache
but reduce the flow-record quality owing to records being
estimated from fewer packets.

2) EFFECT ON NIDS RESOURCE USAGE
NIDS consumes certain CPU resources when making infer-
ence for each arriving flow record. Hence, we explored the
cost in terms of CPU-time usage by the NIDS when flow
cache is under-dimensioned. Fig. 10 shows the increasing
trend on the total inference time of all records as we con-
strained the flow cache size. The results for four different flow
cache sizes are indicated. The y-axis indicates the total CPU
time requiredwhenmaking inference for all the exported flow
records. The increase in the total inference time is caused by
an increase in the number of flow records.

a: OBSERVATIONS
Overall, the total NIDS inference time increased when the
flow cache was under-dimensioned. However, when the sam-
pling rate was harsher, premature kick-outs owing to the
constrained flow cache size were less frequent.

b: INSIGHTS
In resource-constrained settings, to reduce the CPU time
of NIDS resources, employing sampling is beneficial as it
reduces the rate of premature flow-record kick-outs in con-
trast to without sampling scenario.

VI. CONCLUSION AND FUTURE PERSPECTIVES
We proposed an evaluation framework for the proper evalu-
ation of ML-based NIDS. To the best of our knowledge, we
are the first to propose flow-level NIDS evaluation framework
that is applicable even in the presence of sampling. Using
proposed evaluation framework we demonstrated a remark-
able performance gain achieved by addressing training-data
imbalance. Sampling experiments show that 50% of the mali-
cious flows are not exported even with mild 1/10 sampling
rate. Our investigation on the feasibility of the state-of-the-
art ML-based NIDS in the presence of sampling reveal that
generally sampling degrades NIDS performance. However,
we observed that sampling can also increase performance
compared with no sampling when resources such as the flow
cache of the measuring device (e.g., switch) are constrained.

This study was the first attempt to explore the effect of
sampling in ML-based NIDSs. To keep the scope manage-
able, we only focused on misuse detection based NIDS.

5820 VOLUME 10, 2022

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

In future, effect of sampling on anomaly based NIDS should
be investigated as well. Another limitation of current study
is its relatively small scale where we investigated only three
sampling rates, four sampling techniques and threeMLmeth-
ods. Our flow cache experiments were also limited to four
different cache sizes. Therefore, in future larger scale studies
could be carried out in multiple dimensions. One direction
is to investigate on the effect of sampling with exhaustive
sampling rates. Another direction is to cover comprehensive
list of sampling techniques and ML/DL methods. Finally,
conducting such experiments in multiple, diverse datasets
provides more rigorous arguments in the effect of sampling
on NIDS performance.

REFERENCES
[1] R. Hofstede, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras,

‘‘Flow monitoring explained: From packet capture to data analysis with
NetFlow and IPFIX,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4,
pp. 2037–2064, 4th Quart., 2014, doi: 10.1109/COMST.2014.2321898.

[2] A. Sperotto and A. Pras, ‘‘Flow-based intrusion detection,’’ in Proc. 12th
IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM) Workshops, May 2011,
pp. 958–963, doi: 10.1109/INM.2011.5990529.

[3] B. Claise, B. Trammell, and P. Aitken, Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Informa-
tion, document RFC 7011, Internet Requests for Comments, RFC Editor,
Sep. 2013. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7011.txt

[4] M. F. Umer, M. Sher, and Y. Bi, ‘‘Flow-based intrusion detection: Tech-
niques and challenges,’’ Comput. Secur., vol. 70, pp. 238–254, Sep. 2017,
doi: 10.1016/j.cose.2017.05.009.

[5] B. Claise, Cisco Systems NetFlow Services Export Version 9, document
RFC 3954, Internet Requests for Comments, RFC Editor, Oct. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3954.txt

[6] V. Kumar. Network Intrusion Detection on UNSW-NB15.
Github. Accessed: Sep. 2021. [Online]. Available: https://github.
com/vinayakumarr/Network-IntrusionDetection/blob/master/UNSW-
NB15/CNN/multiclass/cnn2.py

[7] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat,
and S. Venkatraman, ‘‘Deep learning approach for intelligent intrusion
detection system,’’ IEEE Access, vol. 7, pp. 41525–41550, 2019, doi:
10.1109/ACCESS.2019.2895334.

[8] J. Kevric, S. Jukic, and A. Subasi, ‘‘An effective combining classifier
approach using tree algorithms for network intrusion detection,’’ Neu-
ral Comput. Appl., vol. 28, no. S1, pp. 1051–1058, Dec. 2017, doi:
10.1007/s00521-016-2418-1.

[9] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, ‘‘Survey on
SDN based network intrusion detection system using machine learning
approaches,’’Peer-Peer Netw. Appl., vol. 12, no. 2, pp. 493–501, Jan. 2019,
doi: 10.1007/s12083-017-0630-0.

[10] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘‘A deep learning approach
for network intrusion detection system,’’ in Proc. 9th EAI Int. Conf.
Bio-Inspired Inf. Commun. Technol. (BIONETICS), 2016, pp. 21–26, doi:
10.4108/eai.3-12-2015.2262516.

[11] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018, doi: 10.1109/TETCI.2017.2772792.

[12] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating
a new intrusion detection dataset and intrusion traffic characterization,’’
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116, doi:
10.5220/0006639801080116.

[13] M. A. Ferrag, L. A. Maglaras, H. Janicke, and R. Smith, ‘‘Deep learning
techniques for cyber security intrusion detection: A detailed analysis,’’ in
Proc. Electron. Workshops Comput., vol. 10, Sep. 2019, pp. 126–136, doi:
10.14236/ewic/icscsr19.16.

[14] D. Masters and C. Luschi, ‘‘Revisiting small batch training for deep neural
networks,’’ 2018, arXiv:1804.07612.

[15] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, ‘‘Application of sam-
plingmethodologies to network traffic characterization,’’ACMSIGCOMM
Comput. Commun. Rev., vol. 23, no. 4, pp. 194–203, Oct. 1993, doi:
10.1145/167954.166256.

[16] M. Wang, B. Li, and Z. Li, ‘‘SFlow: Towards resource-efficient
and agile service federation in service overlay networks,’’ in Proc.
24th Int. Conf. Distrib. Comput. Syst., 2004, pp. 628–635, doi:
10.1109/ICDCS.2004.1281630.

[17] Using NetFlow Sampling to Select the Network Traffic to
Track. Accessed: Sep. 7, 2021. [Online]. Available: https://www.
cisco.com/c/en/us/td/docs/ios-xml/ios/netflow/configuration/xe-3s/nf-xe-
3s-book/nflow-filt-samp-traff-xe.pdf

[18] R. Jang, D. Min, S. Moon, D. Mohaisen, D. Nyang, and S. S. Event,
‘‘SketchFlow: Per-flow systematic sampling using sketch saturation
event,’’ in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
Jul. 2020, pp. 1339–1348, doi: 10.1109/INFOCOM41043.2020.9155252.

[19] A. Kumar and J. Xu, ‘‘Sketch guided sampling–using on-line estimates of
flow size for adaptive data collection,’’ in Proc. 25th IEEE Int. Conf. Com-
put. Commun. (IEEE INFOCOM), Apr. 2006, pp. 1–12, doi: 10.1109/IN-
FOCOM.2006.326.

[20] C. Hu, B. Liu, S. Wang, J. Tian, Y. Cheng, and Y. Chen, ‘‘ANLS: Adap-
tive non-linear sampling method for accurate flow size measurement,’’
IEEE Trans. Commun., vol. 60, no. 3, pp. 789–798, Mar. 2012, doi:
10.1109/TCOMM.2011.112311.100622.

[21] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani, ‘‘Fast
monitoring of traffic subpopulations,’’ in Proc. 8th ACM SIGCOMMConf.
Internet Meas. Conf. (IMC), Vouliagmeni, Greece, 2008, pp. 257–270, doi:
10.1145/1452520.1452551.

[22] J. Mai, A. Sridharan, H. Zang, and C.-N. Chuah, ‘‘Fast filtered sam-
pling,’’ Comput. Netw., vol. 54, no. 11, pp. 1885–1898, Aug. 2010, doi:
10.1016/j.comnet.2010.01.015.

[23] N. Duffield, C. Lund, andM. Thorup, ‘‘Learnmore, sample less: Control of
volume and variance in network measurement,’’ IEEE Trans. Inf. Theory,
vol. 51, no. 5, pp. 1756–1775, May 2005, doi: 10.1109/TIT.2005.846400.

[24] N. Hohn and D. Veitch, ‘‘Inverting sampled traffic,’’ IEEE/ACM
Trans. Netw., vol. 14, no. 1, pp. 68–80, Feb. 2006, doi:
10.1109/TNET.2005.863456.

[25] P. Tune and D. Veitch, ‘‘Towards optimal sampling for flow size estima-
tion,’’ in Proc. 8th ACM SIGCOMM Conf. Internet Meas. Conf. (IMC),
2008, pp. 243–256, doi: 10.1145/1452520.1452550.

[26] R. Koch, ‘‘Towards next-generation intrusion detection,’’ in Proc. 3rd Int.
Conf. Cyber Conflict, 2011, pp. 151–168.

[27] J.-H. Jun, C.-W. Ahn, and S.-H. Kim, ‘‘DDoS attack detection by
using packet sampling and flow features,’’ in Proc. 29th Annu. ACM
Symp. Appl. Comput., Mar. 2014, pp. 711–712, doi: 10.1145/2554850.
2555109.

[28] T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim,
‘‘Suspicious traffic sampling for intrusion detection in software-defined
networks,’’ Comput. Netw., vol. 109, pp. 172–182, Nov. 2016, doi:
10.1016/j.comnet.2016.05.019.

[29] G. Androulidakis and S. Papavassiliou, ‘‘Improving network anomaly
detection via selective flow-based sampling,’’ IET Commun., vol. 2, no. 3,
pp. 399–409, Mar. 2008, doi: doi:10.1049/iet-com:20070231.

[30] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye, ‘‘Impact of packet
sampling on portscan detection,’’ IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2285–2298, Dec. 2006, doi: 10.1109/JSAC.2006.884027.

[31] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, ‘‘Is sampled data
sufficient for anomaly detection?’’ in Proc. 6th ACM SIGCOMM Internet
Meas. (IMC), 2006, pp. 165–176, doi: 10.1145/1177080.1177102.

[32] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, ‘‘Detecting
HTTP-based application layer DoS attacks on web servers in the pres-
ence of sampling,’’ Comput. Netw., vol. 121, pp. 25–36, Jul. 2017, doi:
10.1016/j.comnet.2017.03.018.

[33] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine
learning methods for cyber security intrusion detection,’’ IEEE Com-
mun. Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, Oct. 2016, doi:
10.1109/COMST.2015.2494502.

[34] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape, ‘‘A hier-
archical hybrid intrusion detection approach in IoT scenarios,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–7, doi:
10.1109/GLOBECOM42002.2020.9348167.

[35] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, ‘‘Kitsune: An ensem-
ble of autoencoders for online network intrusion detection,’’ 2018,
arXiv:1802.09089.

[36] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

VOLUME 10, 2022 5821

http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1109/INM.2011.5990529
http://dx.doi.org/10.1016/j.cose.2017.05.009
http://dx.doi.org/10.1109/ACCESS.2019.2895334
http://dx.doi.org/10.1007/s00521-016-2418-1
http://dx.doi.org/10.1007/s12083-017-0630-0
http://dx.doi.org/10.4108/eai.3-12-2015.2262516
http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.14236/ewic/icscsr19.16
http://dx.doi.org/10.1145/167954.166256
http://dx.doi.org/10.1109/ICDCS.2004.1281630
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155252
http://dx.doi.org/10.1109/INFOCOM.2006.326
http://dx.doi.org/10.1109/INFOCOM.2006.326
http://dx.doi.org/10.1109/TCOMM.2011.112311.100622
http://dx.doi.org/10.1145/1452520.1452551
http://dx.doi.org/10.1016/j.comnet.2010.01.015
http://dx.doi.org/10.1109/TIT.2005.846400
http://dx.doi.org/10.1109/TNET.2005.863456
http://dx.doi.org/10.1145/1452520.1452550
http://dx.doi.org/10.1145/2554850.2555109
http://dx.doi.org/10.1145/2554850.2555109
http://dx.doi.org/10.1016/j.comnet.2016.05.019
http://dx.doi.org/doi:10.1049/iet-com:20070231
http://dx.doi.org/10.1109/JSAC.2006.884027
http://dx.doi.org/10.1145/1177080.1177102
http://dx.doi.org/10.1016/j.comnet.2017.03.018
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348167
http://dx.doi.org/10.1109/ACCESS.2017.2762418

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

[37] A. Alharbi, W. Alosaimi, H. Alyami, H. T. Rauf, and R. Damaševičius,
‘‘Botnet attack detection using local global best bat algorithm for industrial
Internet of Things,’’ Electronics, vol. 10, no. 11, p. 1341, Jun. 2021, doi:
10.3390/electronics10111341.

[38] J. Kim, M. Shim, S. Hong, Y. Shin, and E. Choi, ‘‘Intelligent detection of
IoT botnets using machine learning and deep learning,’’ Appl. Sci., vol. 10,
no. 19, p. 7009, Oct. 2020, doi: 10.3390/app10197009.

[39] A. H. Lashkari. CICFlowmeter-V4.0. Github. Accessed: Sep. 2021.
[Online]. Available: https://github.com/ahlashkari/CICFlowMeter

[40] NetFlow. Accessed: Sep. 2021. [Online]. Available: https://www.
cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[41] N. Brownlee, C. Mills, and G. Ruth, Traffic Flow Measurement:
Architecture, document RFC 2722, Internet Requests for Comments,
RFC Editor, Oct. 1999. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc2722

[42] J. Quittek, T. Zseby, B. Claise, and S. Zander, Requirements for
IP Flow Information Export (IPFIX), document RFC 3917, Internet
Requests for Comments, RFC Editor, Oct. 2004. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3917

[43] A. Dainotti, A. Pescape, and K. C. Claffy, ‘‘Issues and future direc-
tions in traffic classification,’’ IEEE Netw., vol. 26, no. 1, pp. 35–40,
Jan./Feb. 2012, doi: 10.1109/MNET.2012.6135854.

[44] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Jul. 2009, pp. 1–6, doi: 10.1109/CISDA.2009.5356528.

[45] A. H. Lashkari. (2019). CSE-CIC-IDS 2018 on AWS. [Online]. Available:
https://www.unb.ca/cic/datasets/ids-2018.html

[46] R. Jang, S. Moon, Y. Noh, A. Mohaisen, and D. Nyang, ‘‘InstaMea-
sure: Instant per-flow detection using large in-DRAM working set
of active flows,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jul. 2019, pp. 2047–2056, doi: 10.1109/ICDCS.2019.
00202.

[47] Y. Li, R. Miao, C. Kim, and M. Yu, ‘‘FlowRadar: A better netflow for
data centers,’’ in Proc. 13th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), Santa Clara, CA, USA, Mar. 2016, pp. 311–324.

[48] P. A. A. Resende and A. C. Drummond, ‘‘A survey of random forest based
methods for intrusion detection systems,’’ ACM Comput. Surveys, vol. 51,
no. 3, pp. 1–36, Jul. 2018, doi: 10.1145/3178582.

[49] R. Vinayakumar, K. P. Soman, and P. Poornachandran, ‘‘Applying convolu-
tional neural network for network intrusion detection,’’ in Proc. Int. Conf.
Adv. Comput., Commun. Informat. (ICACCI), Sep. 2017, pp. 1222–1228,
doi: 10.1109/ICACCI.2017.8126009.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Jan. 2011.

[51] K. Hao. Training a Single AI Model Can Emit as Much Carbon as
Five Cars in Their Lifetimes. Accessed: Sep. 7, 2021. [Online]. Avail-
able: https://www.technologyreview.com/2019/06/06/239031/training-a-
single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

[52] A. Gulli and S. Pal. Keras. Accessed: Sep. 2021. [Online]. Available:
https://keras.io/

[53] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, 2002, doi: 10.1613/jair.953.

[54] M. Bach, A. Werner, J. Żywiec, and W. Pluskiewicz, ‘‘The study of
under- and over-samplingmethods’ utility in analysis of highly imbalanced
data on osteoporosis,’’ Inf. Sci., vol. 384, pp. 174–190, Apr. 2017, doi:
10.1016/j.ins.2016.09.038.

[55] A. Paszke, S. Gross, F.Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘‘PyTorch: An imper-
ative style, high-performance deep learning library,’’ in Proc. NeurIPS,
2019, pp. 8024–8035.

[56] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, ‘‘MIMETIC:
Mobile encrypted traffic classification using multimodal deep learn-
ing,’’ Comput. Netw., vol. 165, Dec. 2019, Art. no. 106944, doi:
10.1016/j.comnet.2019.106944.

[57] M. Roesch, ‘‘Snort–lightweight intrusion detection for networks,’’ in Proc.
13th USENIX Conf. Syst. Admin., 1991, pp. 229–238.

[58] A. Rouari, A. Moussaoui, Y. Chahir, H. T. Rauf, and S. Kadry,
‘‘Deep CNN-based autonomous system for safety measures in
logistics transportation,’’ Soft Comput., vol. 25, pp. 1433–7479,
Jun. 2021.

[59] A. Daniel, K. Subburathinam, B. A. Muthu, N. Rajkumar, S. Kadry,
R. K. Mahendran, and S. Pandian, ‘‘Procuring cooperative intelligence in
autonomous vehicles for object detection through data fusion approach,’’
IET Intell. Transp. Syst., vol. 14, no. 11, pp. 1410–1417, Nov. 2020.

[60] F. Khan, R. L. Kumar, S. Kadry, Y. Nam, andM.N.Meqdad, ‘‘Autonomous
vehicles: A study of implementation and security,’’ Int. J. Elect. Comput.
Eng., vol. 11, no. 4, pp. 3013–3021, 2021.

[61] S. Malik, H. A. Khattak, Z. Ameer, U. Shoaib, H. T. Rauf, and
H. Song, ‘‘Proactive scheduling and resource management for
connected autonomous vehicles: A data science perspective,’’ IEEE
Sensors J., vol. 21, no. 22, pp. 25151–25160, Nov. 2021, doi:
10.1109/JSEN.2021.3074785.

[62] S. Lal, S. U. Rehman, J. H. Shah, T. Meraj, H. T. Rauf, R. Damasevicius,
M. A. Mohammed, and K. H. Abdulkareem, ‘‘Adversarial attack and
defence through adversarial training and feature fusion for diabetic
retinopathy recognition,’’ Sensors, vol. 21, no. 11, pp. 1424–8220, 2021.

JUMABEK ALIKHANOV (Student Member,
IEEE) received the B.S. degree from the Tashkent
University of Information Technologies, in 2014,
and theM.E. degree from Inha University, in 2017,
where he is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Information Engineering. His research interests
include machine learning and its applications on
computer vision, natural language processing, sen-
sor data science, and information security.

RHONGHO JANG (Member, IEEE) received the
B.S., M.E., and first Ph.D. degrees from Inha Uni-
versity, South Korea, in 2013, 2015, and 2020,
respectively, and the Ph.D. degree from theDepart-
ment of Computer Science, University of Central
Florida, in 2020. He is currently an Assistant Pro-
fessor with the Department of Computer Science,
Wayne State University. To date, he has published,
as a lead author, several peer-reviewed research
papers, including papers in top-tier conferences

and premier journals, such as IEEE ICDCS, IEEE INFOCOM, and IEEE
TRANSACTIONS ON MOBILE COMPUTING (IEEE TMC). As public services, he is
serving as the Publicity Chair for IEEE ICDCS 2021, and served as the
Web Chair for ACM CoNEXT 2019 and a Reviewer for IEEE TMC,
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (IEEE TNSM),
IEEE/ACM TRANSACTIONS ON NETWORKING (IEEE ToN), and ETRI Journal.

MOHAMMED ABUHAMAD (Member, IEEE)
received the master’s degree in information tech-
nology (artificial intelligence) from the National
University of Malaysia, Bangi, Malaysia, in 2013,
the first Ph.D. degree in computer science from
the University of Central Florida (UCF), in 2020,
and the second Ph.D. degree in electrical and com-
puter engineering from Inha University, Incheon,
Republic of Korea, in 2020. He is currently
an Assistant Professor with the Department of
Computer Science, Loyola University Chicago.

5822 VOLUME 10, 2022

http://dx.doi.org/10.3390/electronics10111341
http://dx.doi.org/10.3390/app10197009
http://dx.doi.org/10.1109/MNET.2012.6135854
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/ICDCS.2019.00202
http://dx.doi.org/10.1109/ICDCS.2019.00202
http://dx.doi.org/10.1145/3178582
http://dx.doi.org/10.1109/ICACCI.2017.8126009
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.ins.2016.09.038
http://dx.doi.org/10.1016/j.comnet.2019.106944
http://dx.doi.org/10.1109/JSEN.2021.3074785

J. Alikhanov et al.: Investigating Effect of Traffic Sampling on ML-Based Network Intrusion Detection Approaches

DAVID MOHAISEN (Senior Member, IEEE)
received the Ph.D. degree from the University of
Minnesota, in 2012. He is currently an Associate
Professor with the University of Central Florida,
where he directs the Security and Analytics Lab
(SEAL). Before joining UCF in 2017, he was
a Senior Research Scientist with Verisign Labs,
from 2012 to 2015, and an Assistant Professor
with SUNY Buffalo, from 2015 to 2017. His
research interests include networked systems and

their security, online privacy, and measurements. He is a Senior Member of
ACM (2018). He is also the Editor-in-Chief of EAI Endorsed Transactions
on Security and Safety, and an Associate Editor of the IEEE TRANSACTIONS

ON MOBILE COMPUTING, Computer Networks (Elsevier), and ETRI Journal
(Wiley).

DAEHUN NYANG (Senior Member, IEEE)
received the B.Eng. degree in electronic engi-
neering and computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), in 1994, and the M.S. and Ph.D. degrees
in computer science fromYonsei University, South
Korea, in 1996 and 2000, respectively. He had
been a Senior Researcher at the Electronics and
Telecommunications Research Institute (ETRI),
South Korea, from 2000 to 2003. From 2003

to 2020, he was a Professor at the Computer Science and Engineering
Department, Inha University, South Korea. Since 2020, he has been a
Professor at the Cyber Security Department, ELTech Engineering College,
Ewha Womans University. He has been the Founding Director of the
Information Security Research Laboratory, since 2003. He is currently an
Executive Director of the Korean Institute of Information Security and
Cryptology. His research interests include all algorithmic aspects of AI
security, AI attack, network security, privacy, usable security, biometrics,
and their applications to authentication and public key cryptography. His
recent interest lies also in network measurement, load balancing algorithm,
counting algorithm, caching algorithm, fast hash table, key value store for
in-memory DB, random sampling theory, and in-network security (INS)
powered by programmable routers.

He is a member of KIISC. He serves as the Editor-in-Chief (EiC) for
KIISC Journal and a Section Editor (Information Security Section) for ETRI
Journal.

YOUNGTAE NOH (Member, IEEE) received the
B.S. degree in computer science fromChosunUni-
versity, in 2005, the M.S. degree in information
and communication from the Gwangju Institute
of Science and Technology (GIST), in 2007, and
the Ph.D. degree in computer science from the
University of California at Los Angeles (UCLA),
in 2012. He is currently an Assistant Professor
with the Department of Computer Science and
Information Engineering, Inha University. Before

joining Inha University, he was a Staff Member with Cisco Systems, until
2014. His research interests include data center networking, wireless net-
working, future internet, and mobile/pervasive computing.

VOLUME 10, 2022 5823

