
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

DL-FHMC: Deep Learning-based Fine-grained
Hierarchical Learning Approach for Robust

Malware Classification
Ahmed Abusnaina, Mohammed Abuhamad, Hisham Alasmary, Afsah Anwar, Rhongho Jang,

Saeed Salem, DaeHun Nyang, and David Mohaisen,

Abstract—The acceptance of the Internet of Things (IoT) for both household and industrial applications is accompanied by the rapid
growth of IoT malware. With the increase of their attack surface, analyzing, understanding, and detecting IoT malicious behavior are
crucial. Traditionally, machine and deep learning-based approaches are used for malware detection and behavioral understanding.
However, recent research has shown the susceptibility of those approaches to adversarial attacks by introducing noise to the feature
space. In this work, we introduce DL-FHMC, a fine-grained hierarchical learning approach for robust IoT malware detection. DL-FHMC
utilizes Control Flow Graph (CFG)-based behavioral patterns for adversarial IoT malicious software detection. In particular, we extract a
comprehensive list of behavioral patterns from a large dataset of malicious IoT binaries, represented by the shared execution flows,
and use them as a modality for malicious behavior detection. Leveraging machine learning and subgraph isomorphism matching
algorithms, DL-FHMC provides a state-of-the-art performance in detecting malware samples and adversarial examples (AEs). We start
this work by examining the performance of the current CFG-based IoT malware detection systems against adversarial IoT software
crafted using Graph Embedding and Augmentation (GEA) techniques. As a result, we show the adversarial capabilities in generating
practical functionality-preserving AEs with reduced overhead, highlighting caveats in the state of the current detection systems under
adversarial settings. We then introduce suspicious behavior detector, a component that incorporates comprehensive behavioral
patterns extracted from three popular IoT malicious families, Gafgyt, Mirai, and Tsunami, and detects AEs with high accuracy, up to
100% under different attack configurations. The suspicious behavior detector operates as a standalone module that can operate
alongside other malware detection methods and does not assume prior knowledge of the adversarial attacks nor their configurations.

Index Terms—Adversarial Machine Learning, Deep Learning, Internet of Things, Malware Detection, Adversarial Attacks

F

1 INTRODUCTION

T HE Internet of Things (IoT) has shown its fast growth in the
last decade. The communication media of IoT devices is not

limited only in the form of home networking, but also the cellular,
which significantly accelerated their connectivity and accessibility.
According to Ericsson mobility report [2], 3.5 billion IoT devices
are expected to communicate using cellular in 2023. On the
one side, taking advantage of a large number of interconnected
devices, many applications can be adopted on a large scale. More-
over, due to the high-speed and low-latency connection of these
devices, time-critical applications will become feasible in the real
world. On the downside, however, high accessibility also provides
convenience to adversaries. Due to the constrained resource of IoT
devices, the protection function is usually inefficient. Moreover,
due to the large population, low physical accessibility, and the
unrestricted use of policies in many scenarios, IoT devices can
be easily compromised and abused by adversaries to launch a
variety of attacks, such as Distributed Denial of Service (DDoS)
attacks launched by Mirai botnet [3]. Such adversarial scenarios

• A. Abusnaina, M. Abuhamad, H. Alasmary, A. Anwar, and D. Mohaisen
are with the Department of Computer Science, University of Central
Florida, Orlando, FL 32816, USA. H. Alasmary is also with the
Department of Computer Science at King Khalid University, Abha 61421,
Saudi Arabia. R. Jang is with the Department of Computer Science at
Wayne State University, Detroit, MI 48202, USA. S. Salem is with the
Department of Computer Science, North Dakota State University, Fargo,
ND 58105, USA. D. Nyang is with the Department of Computer Science
& Engineering, Ewha Women University, Seoul, South Korea. E-mail:
{ahmed.abusnaina,abuhamad,hisham,afsahanwar} @knights.ucf.edu,
r.jang@wayne.edu, saeed.salem@ndsu.edu, nyang@ewha.ac.kr, and
mohaisen@ucf.edu.
An earlier version of this work has appeared in IEEE ICDCS 2019 [1].

are expected to grow for many years to come, posing critical and
challenging security threats for the IoT ecosystem.

There has been a large body of research work on the problem
of malware analysis using both static and dynamic approaches [4],
[5], [6], and a few attempts on analyzing IoT malware in particular.
Recently, machine learning algorithms, specifically deep learning
techniques, are actively utilized for detecting/classifying malicious
software from benign ones. However, it should be noted that the
research work on IoT malware analysis has been very limited not
only in the size of the analyzed samples, but also the utilized
approaches [7], [8], [9], [10]. Among the static analysis-based
approaches, one of the prominent approaches is to use abstract
graph structures for IoT malware analysis and detection, such as
the control flow graph (CFG) [11], [12]. Previously, it has been
shown that the software graph-based analysis can be incorporated
with machine learning methods to introduce more powerful analy-
sis tools [13], [14]. For the IoT malware detection, CFGs allow de-
fenders to extract plentiful feature representations that can be used
to distinguish those malware from benign, owing to their various
properties, such as the degree distribution, centrality measures,
radius, etc.. [11]. Those properties can be represented as a feature
vector that can be used to enable machine learning algorithms to
accurately detect and classify IoT malware samples. Proposed by
Alasmary et al., one such application is exploring IoT malware
using both graph analysis and machine/deep learning [11]. Their
model not only can learn the representative characteristics of the
graph, but also can be utilized to build an automatic detection
system for predicting the label of the unseen software.

Using machine and deep learning techniques should first
address the concerns and challenges related to their security and

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

usability. Recent studies have shown that machine learning-based
IoT malware detection methods are prone to adversarial manipu-
lation [15]. Adversarial machine learning has shown the fragile
nature of those algorithms to perturbation and data poisoning
attacks, leading to misclassification. For example, an adversary
can introduce a small modification to the input sample to make
the classifier misidentify the malware as benign (i.e., the adversary
introduces an AE). Such modification is usually crafted using
small perturbation to make the AE undetectable and very difficult
to distinguish for the original sample.

Several studies explored the generation of AEs in general
image-based classification problems [16], [17] as well as in the
context of malware classification [1], [18], [19]. Also, there is an
active trend in the research area towards investigating adversarial
machine learning to overcome these threats. However, there is very
limited research that aims to understand the impact of adversarial
learning on deep learning-based IoT malware detection systems
and practical implications, especially for those approaches that
utilize CFG features. We stress the importance of addressing
the threat posed by the machine learning vulnerability to AEs,
particularly in security-sensitive applications. We undertake this
challenge by 1 showing the high potential of successful detec-
tion/classification of IoT malware using deep learning methods;
2 assessing the robustness of such methods to AEs generated by
different state-of-the-art CFG-based AEs generation techniques;
3 introducing a fine-grained hierarchical approach to tackle
adversarial attacks by leveraging patterns extracted from the basic
and elementary structure of the tested software.

To this end, we start by investigating the robustness of DL-
SSMC, Deep Learning-based Single Shot Malware Classification
approach, for accurate IoT malware detection and classification.
DL-SSMC utilizes machine learning techniques for IoT malware
detection and classification, taking feature representation as an
input, and outputs the classification corresponding to the input,
we refer to this process as “single shot”, as it requires querying
the system once, and no decisions are taken outside of the machine
learning model itself. Then, we examine the approach against AEs
generated by Graph Embedding and Augmentation (GEA) [1] and
Sub-Graph Embedding and Augmentation (SGEA) [20]. The GEA
and SGEA are graph-based AEs generation approaches that are
proposed to bypass CFG-based malware detection systems.

To cope with adversaries and to minimize their effects, we pro-
pose DL-FHMC, Fine-grained Hierarchical Learning for Malware
Classification, for detecting and classifying malware samples by
operating on a fine-grained level of structures and patterns ex-
tracted from the malicious software. DL-FHMC utilizes the shared
behavioral structures of the malicious IoT software from the same
family to create sub-graph signatures representing the execution
flows of the malicious behavior. The extracted signatures are
then used to distinguish benign and AEs with high accuracy. Our
experiments show the effectiveness of our proposed approach in
detecting malware samples as well as a high-degree of robustness
against a variety of adversarial attacks.
Summary of contributions. Our contributions are as follows:
• Investigate the robustness of DL-SSMC for IoT malware

detection and classification under GEA and SGEA adver-
sarial configurations. Through comprehensive experiments,
we show the effectiveness of GEA and SGEA in producing
successful AEs that can fool the machine learning-based
malware detection system.

• Propose DL-FHMC, fine-grained hierarchical learning for
malware classification, that extracts potential malicious be-

havioral patterns of IoT malicious families. We extracted
30,000 behavioral patterns from three IoT malicious families.

• Investigate the robustness of DL-FHMC under adversarial
configurations. DL-FHMC operates by investigating the ma-
licious subgraphs within the IoT malware, using subgraph
mining and pattern recognition to detect suspicious and
malicious behaviors within the tested samples, mitigating the
effects of AEs and detecting up to 100% of malicious AEs.

Organization. This work is organized as follows: In §2, a brief
background is provided. We discuss the threat model and ad-
versarial capabilities in §3. An overview of the dataset, data
representation, and used learning algorithms are highlighted in §4.
In §5, we evaluate the proposed adversarial methods on tradi-
tional deep learning techniques. Then, we propose a fine-grained
hierarchical learning technique for suspicious behavior detection
in §6. In §7, we discuss the proposed adversarial methods and
suspicious behavior detection approach. Related work has been
discussed in §8. Finally, we conclude our work in §9.

2 PRELIMINARIES

We investigate the effect of incorporating adversarial learning
techniques into CFG-based deep learning IoT malware detection
systems in an attempt to understand the robustness of such models
against adversarial learning attacks as a result of AEs. This will
in turn provide insights toward proposing a robust IoT adversarial
software detection system. In the following, we provide a brief
background related to malware analysis, and incorporating graph
theory into analyzing malicious behavior.

2.1 Malware Analysis
Malware analysis is used for understanding malware functionality,
capabilities, behavior, and intent. The results of the analysis are
used to build detectors and design defenses to protect against
future malware campaigns, while the analysis falls into one of
two types, static or dynamic. Static analysis examine the binary
without execution. Given the malicious nature such binaries, static
analysis is utilized as a precursor to dynamic analysis. The mal-
ware binary can then be executed in a sandboxed environment with
a much-reduced focus to observe the patterns, like the behavioral
artifacts in which is called the dynamic analysis.
Static Analysis. Static analysis approaches employ techniques to
extract indicators to determine whether a binary is malicious or
benign [21]. The various analysis modalities, such as instructions,
basic blocks, functions etc., hint at the possible execution pattern
of the software. For example, the traces of user name and password
list, along with shell-based login attempts, implies possible usage
of dictionary attacks being launched by the software. These infer-
ential results are drawn from static analysis to enable the analysts
to emphasize and predict specific patterns. Additionally, traces
can also be used by analysts to address issues during dynamic
analysis, e.g., virtual machine obfuscation, ptrace obfuscation etc..
Traces and components of the software are often extracted using a
reverse engineering process of the software binaries that allow
the understanding of its composition, architecture, and design.
Analysts perform reverse engineering of software binaries using
several available off-the-shelf tools. The reverse engineering pro-
cess also generates artifacts to be subject of analysis including
high-level representation of the binaries such as the CFGs and
Data Flow Graphs (DFGs). The CFG of a program is the graphical
representation of the flow of control during the execution of that

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

program. While the DFG represents the system events to under-
stand the possible execution of the system behaviors. It explains
the flow of the data that passes from one node to another. Although
static analysis is quite powerful and popular, it sometimes falls
short of achieving its end goal of providing in-depth insights to
the software due to multiple evasion techniques. For example,
malware developers use evasion techniques to the analysis of
their produced malware. The evasion techniques include packing
(UPX [22]), obfuscation (function-, string- obfuscation), etc..
Dynamic Analysis. Unlike static analysis, dynamic analysis exe-
cutes the application in a simulated and monitored environment
to observe its behavior and understand its functionality [23].
This approach aims to capture different behavioral patterns of
software. For example, dynamic analysis helps to unravel the
program’s network patterns, such as communication with the
Command and Control (C&C) server. Since the malicious nature
of software can affect the status of the machine it is executed on,
the following observations are made: 1) comparing the system
state before and after the execution of the application, or 2)
monitoring the application’s actions during the execution. Similar
to static analysis, dynamic analysis can be evaded by software
developers by adopting means that prevent their software from
getting dynamically-analyzed. For example, malware developers
often employ conditions that crash the software once encountering
virtual machines, debugging tools, or network monitoring tools.

2.2 Graph Analysis

Graph Analysis. The CFG is a graph representation of the
program which shows all paths that can be reached during the
execution, as shown in Figure 1. In a CFG, the set of nodes means
the basic blocks where each block is a straight-line instruction
without any jump or jump target, while the set of directed edges
corresponds to the jump which traverses from the block to the
other block at the branch (if), loop (while, for), and the end of
the function (return). Once the first instruction of the basic block
is executed, the rest of the instructions in the same block are
necessarily executed unless terminated by external interference.
In general, CFG is used for the structural analysis of the program.
For example, from the perspective of optimization, the CFG is
used to analyze the reachability of each block. By constructing
the CFG and evaluating the reachability, the flaws of the program
(infinite loop or unreachable codes) can be found and addressed.
CFG-based Analysis. In graph theory, there are various concepts
that express the characteristics of a graph. Given G = (V,E),
for example, the number of vertices (|V |) means the order of G,
while the number of edges (|E|) corresponds to the size of G.
The density of the graph can be defined as D = |E|/(|V | ∗
(|V | − 1)) for directed simple graph, which means the ratio of
the number of edges in G to the maximal number of edges in the
complete graph. The centrality is measured for each node v ∈ V ,
which shows how important a specific node is. In detail, there are
several different kinds of centrality, such as closeness centrality,
betweenness centrality, Eigenvector centrality, etc..

These indicators (and further concepts not described above)
can be considered the features of the graph G. Moreover, the com-
bination of those metrics can be a more deterministic characteristic
of the graph. Considering that a CFG is a kind of graph, it is true
that each binary has not only its unique graph representation but
also the associated values, such as the order, size, and density of
CFG, and centrality for each vertex in CFG. On the other hand, the
graph-based analysis can provide the possibility for identifying the

#include <stdio.h>
void main(){

int a = 0;
do
{

a++;
}while(a < 10);

}

Listing 1: C script of an
example of original sample

#include <stdio.h>
void main(){

int x = 0;
int s = 0;
if (x!=0){

s++;
}

}

Listing 2: C script of an
example of targeted sample

#include <stdio.h>
void main(){

/∗set a condition variable∗/
int cond=1;
if (cond==1){

/∗ script of original sample∗/
/∗ this section will be executed∗/
int a = 0;
do{

a++;
}while(a<10);

}
else{

/∗ script of target sample∗/
/∗ this section will not be executed∗/
int x = 0;
int s = 0;
if (x!=0){

s++;
}

}
}

Listing 3: C script of combining original and selected samples.
Note that a condition variable is used to enable the desired
functionality. Additionally, the script of the original and
selected samples are preserved within the generated sample.

;-- main:
/ (fcn) sym.main 24
| sym.main ();
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_4h], 0

| 0x004004e1 add dword [local_4h], 1
| 0x004004e5 cmp dword [local_4h], 9
| 0x004004e9 jle 0x4004e1

| 0x004004eb nop
| 0x004004ec pop rbp
\ 0x004004ed ret

Fig. 1: The generated CFG for the original sample and used for
extracting graph-based features (graph size, centralities, etc.) for
graph/program classification and malware detection.

malware. Because it is highly likely that the binaries in the same
“family” share the structural similarity (even if there is a little
difference), the CFG-based features can be combined with the
state-of-the-art machine learning technique to determine whether
a given binary is malicious or not.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

;-- main:
/ (fcn) sym.main 35
| sym.main ();
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_8h], 0
| 0x004004e1 mov dword [local_4h], 0
| 0x004004e8 cmp dword [local_8h], 0
| 0x004004ec je 0x4004f6

| 0x004004f6 nop
| 0x004004f7 pop rbp
\ 0x004004f8 ret

| 0x004004ee mov dword [local_4h], 0xa
| 0x004004f5 nop

Fig. 2: The CFG for the selected target sample generated and used
for extracting graph-based features (graph size, centralities, etc.)
for graph/program classification and malware detection.

/ (fcn) main 66
| main ();
| ; var int local_10h @ rbp-0x10
| ; va0r int local_ch @ rbp-0xc
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_ch], 1
| 0x004004e1 cmp dword [local_ch], 1
| 0x004004e5 jne 0x4004fa

| 0x004004fa mov dword [local_8h], 0
| 0x00400501 mov dword [local_4h], 0
| 0x00400508 cmp dword [local_8h], 0
| 0x0040050c je 0x400515

| 0x004004e7 mov dword [local_10h], 0

| 0x00400515 nop
| 0x00400516 pop rbp
\ 0x00400517 ret

| 0x0040050e mov dword [local_4h], 0xa

| 0x004004ee add dword [local_10h], 1
| 0x004004f2 cmp dword [local_10h], 9
| 0x004004f6 jle 0x4004ee

| 0x004004f8 jmp 0x400515

Fig. 3: The generated adversarial graph using GEA approach.
Note that this graph is obtained logically by embedding the graph
in Fig. 2 into the graph in Fig. 1, although indirectly done by
injecting the code listings as highlighted in Listings 1, 2, and 3.

3 THREAT MODEL

The rapid reliance on machine learning methods in various
applications has raised several security and privacy concerns,
especially in security-sensitive applications. It has become crucial
to understand and assess the robustness of machine learning tech-
niques to several adversarial settings. These adversarial settings
include AEs, where an adversary intends to fool or misguide the
classification model with malicious inputs that are generated by
applying a minimal perturbation to the original sample [18]. These
modifications misclassify the samples of the model from benign to
malware and vice versa and even misclassify the malware classes
to another class. Such adversarial attacks can be launched under
different adversarial capabilities that allow for either black-box
and white-box attacks. In a white-box attack, the adversary has
full knowledge of the inner networking paradigm of the model,
while in a black-box attack, the adversary has only access to the
model via an oracle and observes only the output of the model.

The literature on AEs and their effects includes numerous
studies where the perturbation is applied to image pixels [15], [18],
[24]. Unlike image AEs, the generated AEs from the IoT software
must preserve the original sample’s functionality and practicality
in order to function properly. Adversarial machine learning can be

derived from two perspectives: targeted and non-targeted attacks.
Targeted attacks. The focus of this attack is to generate AE x′

that forces the classifier f to misclassify into a specific target
class t. For instance, the adversary generates a set of malicious
IoT software samples, which are classified as benign. That is:
x′ : [f (x′) = t] ∧ [∆ (x, x′) ≤ ε], where f(.) represents the
classifier’s output, ∆ (x, x′) denotes the difference between x and
the crafted AE x′, whereas ε is a distortion threshold.
Non-targeted attacks. The focus of non-targeted attack is to
generate an AE that forces the classifier f to misclassify to any
class other than the original class f(x), where x is the original
input. That is: x′ : [f (x′) 6= f (x)]∧ [∆ (x, x′) ≤ ε], where f(.)
shows the classifier’s output, ∆ (x, x′) represents the difference
between x and x′, and ε is the distortion threshold.

In this study, we generate AEs from the IoT software based
on code-level manipulation using GEA [1] and SGEA [20]. In the
following, we discuss each attack briefly.

3.1 Graph Embedding and Augmentation (GEA)
GEA generates realistic AEs, where the functionality and prac-
ticality of the original binary are maintained. The key idea of
GEA is combining an original CFG with a targeted CFG. In the
following, we briefly describe GEA using an example.
Practical Implementation. Assume an original sample (software)
(xorg) and a selected target sample (xsel), GEA combines xorg
with a xsel while preserving the functionality and practicality of
xorg . Listing 1 shows the sample script of xorg , and Listing 2
shows a sample script of xsel. The GEA process combines the
two scripts while ensuring that xsel does not affect the process
and functionality of xorg . The generated AE in Listing 3 shows
the script after the combination process. Note that the condition is
set to execute only the functionality related to xorg and preventing
the processes of xsel from being executed. Prior to generating the
CFG for these algorithms, we compile the code using the GNU
Compiler Collection (GCC) command. Afterward, Radare2 [25]
is used to extract the CFG from the binaries.

Figure 1 and Figure 2 show the generated CFGs for both xorg
and xsel, respectively. As shown in Figure 3, the combined CFG
consists of the two scripts sharing the same entry and exit nodes.
Therefore, the GEA approach adds modifications to the CFG for
generating the AE. Given the nature of the extracted features,
the applied changes on the CFG are reflected upon the features,
regardless of the effects on the functionality and executability of
the original sample. Following the adopted approach in [1], we
select three different-sized graphs from benign samples as xsel.
The selected graphs vary in size, where the size is the number
of nodes in the graph. To generate AEs, we selected a graph and
connected it with all malicious samples.

3.2 Sub-GEA (SGEA)
While GEA combines an original CFG to a selected CFG of the
IoT samples to misclassify the machine learning model, the SGEA
approach aims to reduce the injection size and achieve the ad-
versarial objectives with minimal perturbation. More specifically,
it uses deep discriminative subgraph patterns extracted from the
CFGs of each class using a correspondence-based quality criterion
(CORK) algorithm, which defines a submodular quality criterion
that ensures a solution close to the optimal solution [26]. This
is done by using subgraphs that appear more frequently in one
class than others, to fool the machine learning model in predicting

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Preprocessing

CFG Extraction

Disassembling
CORK

Feature
Extraction ClassifierGraph

Embedding

Benign

Gafgyt

Mirai

Tsunami

Fig. 4: SGEA pattern extraction and AE generation process. SGEA uses CORK to extract discriminative subgraphs from each class.
Then, the extracted subgraphs are embedded to generate the AEs. The process is terminated and the AE is returned upon successfully
misclassifying the model.

2 3 4

51

0 6

Fig. 5: Sample of extracted discriminative subgraph from Gafgyt
malicious family. Here, the graph size is 7, and the labels are
arbitrary. Ideally, connecting this subgraph to a sample should
lead the model to misclassify the sample into Gafgyt.

that class (e.g., when launching a targeted attack). Let D denotes
the CFGs of the training samples, D = {Gi}ni=1 and class labels
C = {ci}ni=1 where ci ∈ {+1,−1} is the class label of graphGi.
Also letD+ andD− denote the set of graphs in the corresponding
classes. For a multi-class dataset, we run the CORK algorithm
once for each class where all the graph that belong to the same
class are included in D+ and the other graphs are in D−. A
graph Gi supports another graph S if S is a subgraph of Gi. Let
DS = {Gi|S ⊆ Gi ∀ Gi ∈ D} denote the supporting graphs of
a subgraph S. Moreover, let D+

S and D−S , denote the supporting
graphs of the subgraph in the positive and negative graphs,
respectively. CORK defines a submodular quality criterion, q, for
a subgraph based on the set of supporting graphs (‘hits’) and non-
supporting graphs (‘misses’) in the two classes and is calculated
as follows: q(Gs) = −(|D+∼

S |∗|D
−∼
S |+ |D

+
S |∗|D

−
S |). The best

quality score is achieved when a subgraph appears in all graphs of
one class and not once in the graphs of the other classes. Pruning
strategies, as used in the quality criterion of CORK, are integrated
into the gSpan algorithm [27] to directly mine discriminative
subgraphs. Once the set of discriminative subgraphs are mined,
we employ gSpan, a graph-based substructure mining pattern for
mining frequent subgraphs of size five nodes or higher.

Practical Implementation. SGEA combines xorg with the se-
lected discriminative subgraph (xsel). For example, Figure 5
shows the discriminative subgraph extracted from the Gafgyt
class and listing 4 shows the equivalent C script to generate that
subgraph, which can then be combined with the xorg to generate
an AE. Figure 4 shows the overview of patterns extraction and
the process of generating AEs in the SGEA approach. While GEA
modifies the CFG by connecting the selected graph with the orig-
inal sample, SGEA connects a carefully generated subgraph with
the original sample to generate AE, reducing the injected graph
size. To generate the subgraph, we extracted the discriminative
subgraph patterns from each class, with a size of five nodes or
higher. Then, in order to reduce the graph size needed to be
embedded, we connect xorg with the subgraph with minimum
size. If the generated AE misclassifies, the process succeeds, and
the AE will be returned; else, we select the next subgraph in
ascending order regarding the number of nodes in the subgraph.

#include<stdio.h>
void main(){

int GEAVar1 = 0; // block 0
if (GEAVar1 == 1){ // block 1

GEAVar1 += 1;
}
else if (GEAVar1 == 2){ // block 2

GEAVar1 += 2;
}
int GEAVar2 = 0; // block 3
if (GEAVar2 == 0){ // block 4

GEAVar2 += 1;
}
else{ // block 5

GEAVar2 += 2;
}
int GEAVar3 = 0; // block 6

}

Listing 4: C script of an example Gafgyt extracted subgraph. Each
block is represented as a node in the generated CFG. Appending
this code to the source code of a sample will lead to producing the
subgraph shown in Figure 5.

TABLE 1: Distribution of IoT samples across the classes. We split
the dataset into 80% training and 20% testing, with an overall
10,091 IoT samples (7,091 IoT malware and 3,000 benign).

Class # of Samples % of Samples# Train # Test # Total
Benign 2,400 600 3,000 29.72

Malicious
Gafgyt 2,400 600 3,000 29.72
Mirai 2,400 600 3,000 29.72
Tsunami 872 219 1091 10.84

Overall 8,072 2,019 10,091 100

In case none of the subgraphs cause misclassification, the original
sample will be returned as the process failed.

Constructing an AE. As shown in Figure 4, we extract a set of
subgraphs from the targeted class. Then, we combine the original
sample with the smallest extracted subgraph of the targeted class
regarding the number of nodes. If the generated CFG fails to
misclassify the model, another subgraph is selected in ascending
order with respect to the number of nodes in the set of gener-
ated subgraphs and combined with the same original graph to
generate another CFG. This process is repeated until a subgraph
successfully misclassifies the model. If no existing subgraph from
the set of targeted subgraphs causes misclassification, the original
sample is returned, hence the process failed in generating AE. In
this study, we consider AEs that misclassify malware to benign,
as such AEs have huge risk on the users, and render the malware
detector systems useless.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

TABLE 2: The distribution of extracted features. 23 algorith-
mic features are extracted from the CFGs. These features are
categorized into seven groups, including number of nodes and
edges, density, shortest path, and centralities. When possible,
the minimum, maximum, median, mean, and standard deviation
values are extracted, as in the shortest path group.

Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
of Edges 1
of Nodes 1
Total 23

4 DATA REPRESENTATION & LEARNING

In this section, we discuss the utilized dataset, dataset representa-
tion, and learning algorithms, including the experimental setup for
DL-SSMC and DL-FHMC.

4.1 Dataset
In this work, we collected binaries of two categories, IoT mali-
cious and benign samples. The malicious samples are collected
from CyberIOCs [28], VirusTotal [29], and VirusShare [30] in
the period of January 2018 to late January of 2021, with a total of
7,091 samples that belong to three malware families. Additionally,
we assembled a dataset of 3,000 benign IoT samples compiled
from the source files on GitHub [31].
Ground Truth Class. The benign and malicious samples in our
dataset were validated using the VirusTotal [29]. We uploaded the
samples on VirusTotal and gathered the scan results corresponding
to each sample. We then used AVClass [32] to classify the mali-
cious samples into their corresponding families. We summarize
the dataset in table 1.

4.2 Data Representation
Samples of the IoT benign (3,000 sample) and IoT mal-
ware categories (7,091 samples) were reverse-engineered using
Radare2 [25], a reverse engineering framework that provides
various analysis capabilities, for obtaining the samples’ corre-
sponding CFGs. Using the samples’ CFGs extracted by Radare2,
we represent the CFG using the graph-theoretic features proposed
by Alasmary et al. [33]. In particular, we extracted 23 different
algorithmic features categorized into seven groups. Table 2 shows
the feature category and the number of features in each category.
Except for the number of edges, nodes, and the density of the
graph, five features were extracted from each feature category,
including the minimum, maximum, median, mean, and standard
deviation values for the observed parameters. To this end, each
IoT software is represented as a vector of size 1× 23 representing
the corresponding CFG-based algorithmic features.

4.3 Learning Algorithms
Toward IoT malware detection and classification, we utilize dif-
ferent machine and deep learning algorithms for pattern learning
and deep feature extraction. In the following, we briefly describe
each learning algorithm.
Random Forest (RF). RF consists of N decision trees, each
decision tree is trained on a collection of random features, and

1/21

In
p

u
t

1x23

1
x1

0
0

1
x1

0
0

1
x1

0
0

1
x1

0
0

1
x1

0
0

So
ft

m
ax

La
ye

r

D
ro

p
o

u
t

p
(0

.2
5

)

FP
R

FN
R

A
R

Ev
al

u
at

io
n

 M
et

ri
cs

1
x1

0
0

D
ro

p
o

u
t

p
(0

.5
0

)

Fig. 6: The internal architectural of the DNN used for the detection
and classification tasks. The design consists of six fully connected
layers, with dropout operations and softmax activation function.

F
e

a
tu

re
s

V
e

c
to

r

1x23

⊗ ⊗

46@1x3 Feature Maps

M
a

x
p
o

o
lin

g

46@1x3 Feature Maps 46@1x2

D
ro

p
o
u

t

FC Layer

ConvB1

F
ilt

e
rs

F
ilt

e
rs

⊗

F
ilt

e
rs

⊗

F
ilt

e
rs

M
a
x
p

o
o
lin

g

D
ro

p
o
u
t

ConvB2

Feature Maps 92@1x2 Feature Maps 92@1x3 Feature Maps 92@1x3

F
la

tt
e

n

D
e
n
s
e
 (

5
1
2
)

1x512

D
ro

p
o

u
t

S
o
ft

m
a
x

L
a
y
e
r

Accuracy

FPR FNR

Evaluation Metrics

CB

Feature Maps

1x23

Conv 1

1x21

Conv 2

1x10

S1

1x4

S2

1x8

Conv 4

1x10

Conv 3

Fig. 7: Internal design of the CNN architecture used for detection
and classification task. Notice that 46@1x3, for example, refers to
applying 46 filters each of size 1x3 on the input data. The design
consists of four convolutional layers with maxpooling and dropout
operations. Then, a dense layer of size 512 is used with a softmax
activation function to output the model’s prediction.

finds the non-linear relationships between the features and the
output decision. The final prediction of RF classifier with N
decision trees is determined by a majority vote over the predictions
or by averaging the prediction of all trees, determined as follows:

fRF =
1

N

N∑
n=1

fn(X
′

s),

where, for a randomly selected feature set, (X
′

. ⊂ X.), fn is the
nth tree’s prediction and X

′

s is the segment’s s vector.
Deep Neural Networks (DNN). DNN is an artificial neural
network with neurons of each layer are fully connected to the
neurons of the next layer. It consists of multiple hidden layers
between the input and output layers. Given a feature vector
X of length q and target y, the DNN-based classifier learns a
function f(.) : Rq −→ Ro, where q is the input’s dimension
and o is the output’s dimension. With multiple hidden layers,
the dimension of the output of every hidden layer decreases with
transformation. Each neuron in the hidden layer transforms the
values of the preceding layer using linearly weighted summation,
w1 + w2 + w3 + ...wq , which passes through a ReLU activation
function (y(x) = max(x, 0)). The output of the hidden layers is
then fed to the output layer, and passed to a softmax activation
function h, defined as h(x) = 1

1+e−x , outputting the prediction
of the classifier.

Figure 6 illustrates the DNN-based model utilized for training
the IoT malware detector and classification system. The archi-
tecture of the DNN-based model consists of two consecutive and
fully connected dense layers of size 1×100 connected to the input
vector, followed by a dropout operation with a probability of 0.25.
The output of the dropout function is fed to fully connected with

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

B G M T
B 0.995 0.002 0.002 0.002
G 0.007 0.977 0.015 0.002
M 0.015 0.008 0.977 0.000
T 0.009 0.018 0.041 0.931

(a) RF

B G M T
B 0.960 0.005 0.025 0.010
G 0.007 0.978 0.013 0.002
M 0.017 0.037 0.937 0.010
T 0.023 0.023 0.023 0.931

(b) DNN

B G M T
B 0.963 0.005 0.023 0.008
G 0.010 0.973 0.015 0.002
M 0.013 0.018 0.967 0.002
T 0.041 0.018 0.041 0.899

(c) CNN

Fig. 8: Confusion matrices of IoT malware classification systems. Here, each row represents the actual class, whereas, columns
represents the predicted labels. Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami (T).

B G M T
B 0.000 0.000 0.000 0.000
G 0.792 0.183 0.003 0.022
M 0.326 0.002 0.671 0.002
T 1.000 0.000 0.000 0.000

(a) RF-Small

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.992 0.000 0.007 0.001
T 1.000 0.000 0.000 0.000

(b) RF-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(c) RF-Large
B G M T

B 0.000 0.000 0.000 0.000
G 0.880 0.100 0.000 0.020
M 0.492 0.028 0.472 0.007
T 0.972 0.000 0.009 0.018

(d) DNN-Small

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.876 0.093 0.030 0.000
T 1.000 0.000 0.000 0.000

(e) DNN-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(f) DNN-Large
B G M T

B 0.000 0.000 0.000 0.000
G 0.078 0.608 0.017 0.297
M 0.135 0.000 0.836 0.028
T 0.885 0.009 0.037 0.069

(g) CNN-Small

B G M T
B 0.000 0.000 0.000 0.000
G 0.560 0.438 0.002 0.000
M 0.873 0.020 0.107 0.010
T 1.000 0.000 0.000 0.000

(h) CNN-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(i) CNN-Large

Fig. 9: GEA: Confusion matrices of IoT malware classification systems. Here, each row represents the actual class, whereas, columns
represents the predicted labels. Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami (T).

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.995 0.000 0.005 0.000
T 1.000 0.000 0.000 0.000

(a) RF

B G M T
B 0.000 0.000 0.000 0.000
G 0.985 0.000 0.015 0.000
M 0.657 0.139 0.194 0.010
T 0.930 0.000 0.070 0.000

(b) DNN

B G M T
B 0.000 0.000 0.000 0.000
G 0.602 0.000 0.348 0.005
M 0.736 0.000 0.219 0.045
T 0.915 0.015 0.070 0.000

(c) CNN

Fig. 10: SGEA: Confusion matrices of IoT malware classification systems. Here, each row represents the actual class, whereas, columns
represents the predicted labels. Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami (T).

another two fully connected dense layers of size 1×100, followed
by a dropout operation with a probability of 0.5. The output is then
fed to the softmax layer. This design enables the extraction of deep
feature representations and patterns from the feature vectors, and
therefore, finding discriminative characteristics for detection and
classification processes.

Convolutional Neural Network (CNN). The basic unit of the
CNN network is a convolution layer, which consists of several
filters convolving over the input to generate feature maps. Once
a feature vector is fed into a convolutional layer, it becomes
abstracted to a feature map, with the shape of (feature map
height) × (feature map width) × (feature map depth), with two
attributes: 1) convolutional kernels defined by a width and a height
(hyper-parameters), 2) the depth of the convolution filter, which is
equal to the depth of the input vector representation feature map.
The CNN-based model constitutes of three blocks, two feature
extraction layers, along the classification layer. Figure 7 illustrates
the CNN-based model architecture used in this study.

Even though, from a machine learning prospective, RF model
seems the most suitable given the data representation and struc-
ture, and the limited number of features (i.e., 23), we also used

DNN and CNN-based approaches as they show their capabilities
in multiple applications for automatically producing high quality
encoding of the features towards a highly accurate classification.
We note that alongside the aforementioned approaches, we also
evaluate the performance of Logistic Regression- and Support
Vector Machine-based architectures, however, due to their low
performance, the results were not included in the evaluation.

4.4 Experimental Setup
We consider both malware detection and classification. Malware
classification refers to identifying a malware family a sample,
while the detection is simply indicating whether a sample is
malicious or benign. Therefore, the detection task can be viewed
as a binary classification task. The classification task aims to detect
and identify the malicious behavior origin (i.e., family).
Training Process. We trained the model architectures using 100
epochs with a batch size of 32. RF uses 100 decision trees, with no
specified maximum length. For DNN and CNN, we used Rectified
Linear Units (ReLUs) as the activation function, with softmax
activation function at the classification layer. For regularization,
we use dropout to prevent over-fitting and allow propagation of

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

TABLE 3: Evaluation (%) of the IoT malware detection systems
on normal samples (i.e., non-adversarial).

Architecture Accuracy F-1 FNR FPR
RF 98.90 99.22 1.19 0.83

DNN 97.42 98.16 1.69 4.67
CNN 98.31 98.80 1.12 3.00

TABLE 4: Evaluation (%) of the IoT malware classification
systems on normal samples (i.e., non-adversarial).

Architecture Accuracy F-1
RF 97.71 97.71
DNN 95.53 95.52
CNN 96.03 96.02

robust and distinct features through the model layers. Note that the
value 0.25 is widely used within the machine learning community,
as 75% of the neurons are considered for feature propagation
between layers [34]. This provides better accuracy, and mitigate
the noise caused by possible bias within the dataset.

Evaluation Metrics. We report the performance of the trained
models using the following metrics: 1) The accuracy of the model,
computed as the ratio of the correctly labeled samples (CLS)
overall test samples (|D|), defined as: CLS ÷ |D|. 2) False Posi-
tive Rate (FPR), which is the number of incorrectly labeled benign
samples (ILB) over the total number of benign samples (|Db|),
computed as ILB ÷ |Db|. 3) True Positive Rate (FNR), repre-
sented as the correctly labeled malicious samples (CLM) divided
by the total number of malicious samples (|Dm|), CLM ÷|Dm|.
4) The F-1 score, defined as: F-1 = 2TP/(2TP + FP + FN), where
TP : the number of malicious samples correctly classified, FP :
the number of benign samples incorrectly classified, FN : the
number of malware samples incorrectly classified. 5) Misclassifi-
cation rate, defined as the ratio of the incorrectly labeled samples
over all the samples in the test dataset (i.e., 1− accuracy).

We also report the confusion matrix when required. The rows
represent the actual classes and the columns are the predicted
labels. The value at a location (x,y) represents the portion of the
samples of class x classified as y.

5 DL-SSMC: DESIGN AND EVALUATION

This section presents DL-SSMC, Deep Learning-based Single
Shot Malware Classification approach. We describe the design and
methods for DL-SSMC in §5.1 and present the evaluation in §5.2.

5.1 DL-SSMC: System Design

The implementation of DL-SSMC incorporates machine and deep
learning models trained using the extracted CFG-based algorith-
mic features for malware detection and classification tasks. In this
approach, we follow the traditional learning approach. The input
(X) to the model is a one-dimensional (1D) vector of size 1× 23
representing the extracted features. Using a Softmax activation
function, the model outputs whether the software is benign or
malicious, alongside the predicted family in the classification
task, i.e., Gafgyt, Mirai, or Tsunami. To this end, we utilize the
aforementioned architectures (subsection 4.3) to train the models
for both detection and classification tasks.

TABLE 5: GEA: Malware to benign misclassification rate (%)
over IoT detection systems.

Architecture Small Median Large
10 23 1,075

RF 73.88 99.85 100
DNN 37.54 90.04 100
CNN 18.84 64.78 100

TABLE 6: GEA: IoT classification systems misclassification rates
(%). The CNN-based model perform the best, robustness-wise,
under the small and median GEA graph embedding attacks.

Architecture Size Gafgyt Mirai Tsunami

RF
Small 81.66 32.88 100

Median 100 99.33 100
Large 100 100 100

DNN
Small 90.00 52.75 98.16

Median 100 96.99 100
Large 100 100 100

CNN
Small 39.16 16.36 93.11

Median 56.16 89.31 100
Large 100 100 100

5.2 DL-SSMC: Evaluation and Results
5.2.1 DL-SSMC: Baseline Performance

DL-SSMC: Detection Task. We design two-class detection DL-
SSMC that distinguish IoT malware from the IoT benign appli-
cations. The model is trained over 23 CFG-based graph-theoretic
features categorized into seven groups. The models achieve an
accuracy rate of 98.90%, 97.42%, and 98.31% with an F-1
score of 99.22%, 98.16%, and 98.80% for RF, DNN, and CNN,
respectively. Table 3 shows the evaluation of each trained model.
Notice that the RF-based model holds the highest performance,
followed by the CNN model.
DL-SSMC: Classification Task. In addition to detecting the
IoT malicious samples, we also design a four-class classification
DL-SSMC. The classification task aims to evaluate DL-SSMC
for classifying the malicious samples into their corresponding
families. We achieved accuracy rates of 97.71%, 95.53%, and
96.03% for RF-, DNN-, and CNN-based models, respectively,
as shown in Table 4. We also provide the confusion matrices
(represented as a percentage of samples) in Figure 8. Here, each
row represents samples of an individual class, while the columns
represent the predicted family.

5.2.2 DL-SSMC: Robustness Assessment against GEA
We investigate the robustness of DL-SSMC against AEs generated
using GEA. In particular, we explore the impact of the size of
the graph and discuss the fundamental overhead of using GEA.
Note that all generated samples maintain the practicality and
functionality of the original code. From the benign software, we
selected three graphs as xsel, the selected samples have small,
median, and large sizes across the dataset. We then connected
each of the graphs with every graph in the malware dataset.
Robustness of Detection Models. The results of DL-SSMC
performance against AEs generated by GEA are shown in Table 5
and Figure 9. Intuitively, a key finding is the impact of graph
size on the misclassification rate, since the increase in the graph
size, i.e., the included number of nodes, results in a higher mis-
classification rate. The main reason for the misclassification is the
injection of benign-like patterns that introduce noise that distort
the existing malicious patterns observed by the learning algorithm.
Embedding larger graphs, for instance, introduces higher distor-
tion to the feature space, considering the extracted 23 algorithmic

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

TABLE 7: SGEA: Malware to benign IoT malware detection
system evaluation. Here, MR: misclassification rate, AVG. Size:
the average subgraph size required to achieve misclassification.

Architecture MR (%) AVG. Size
RF 99.17 6.28
DNN 90.21 6.83
CNN 41.79 7.15

TABLE 8: SGEA: Misclassification rate (%) over IoT classifica-
tion systems. MR: misclassification rates.

Architecture Gafgyt Mirai Tsunami
RF 100 99.50 100
DNN 100 80.59 100
CNN 100 78.10 100

features. This distortion affects the existing patterns learnt by
the machine/deep learning model, and therefore causes higher
misclassification. In general, GEA achieves a misclassification
rate of 100% by embedding a large graph, while achieving a
low as 18.84% misclassification rate by embedding a small graph.
Notice that while the RF-based model provides the best clean
baseline performance, the CNN-based architecture shows the best
robustness against embedding small and medium graphs.

Robustness of Classification Models. Table 6 shows the mis-
classification rates over the IoT malware classification task. Here,
GEA achieves a misclassification rate of 100% from all malicious
families using large graph embedding. Similarly, Tsunami is more
likely to be misclassified to benign, as using median and large
graph embedding misclassify all Tsunami malware to benign as
shown in Figure 9. Similar to the IoT malware detection system,
the misclassification rates increase with the increase in the number
of nodes for the injected graph, and the CNN-based model shows
better robustness (i.e., lower misclassification rate) against graph
embedding, in comparison to its counterparts.

5.2.3 DL-SSMC: Robustness Assessment against SGEA
While GEA achieves a high misclassification rate, it comes with a
computational cost and increased binary size that accommodates
the combination of two samples into one. These costs are reduced
by using SGEA, in which, the size of injection is reduced by care-
fully selecting a subgraph that achieves the adversarial objective.

Robustness of Detection Models. Table 7 show the results of
SGEA against DL-SSMC detection models. SGEA achieves above
90% malware to benign misclassification rate against RF- and
DNN-based models with less than 7 nodes subgraph embedding,
outperforming the GEA approach with an average subgraph size
of 6.28 and 6.83, respectively. However, for CNN, the misclassifi-
cation rate is noticeably lower, 41.79%, as the CNN-based model
shows better robustness against GEA and SGEA.

Robustness of Classification Models. Table 8 and Figure 10 show
the performance of the DL-SSMC classification models against the
SGEA approach. For instance, the SGEA approach successfully
misclassifies all Gafgyt and Tsunami malware in all models, while
having lower misclassification rates for Mirai malware. Further,
the RF-model is considered the least robust model, as shown
in Figure 10a, as malicious samples were classified as benign.

Even though RF-based models provide the best classification
performance on the clean dataset, this does not hold true under
adversarial settings. Our evaluation shows that using a CNN-
based model is noticeably better, considering a loss of < 2%
performance on clean samples for both malware detection and

classification tasks, while delivering higher robustness against
GEA and SGEA.

6 DL-FHMC: COPING WITH AES

Machine learning methods for malware detection and classifica-
tion, e.g., DL-SSMC, are susceptible to AEs and fall short of
delivering a robust system against adversarial settings, as shown
in §5. This motivates us to explore methods and alternative
designs to cope with such vulnerabilities to adversarial attacks.
In this section, we propose DL-FHMC, Fine-grained Hierarchical
Learning for Malware Classification, a robust system for malware
detection and classification that leverages deep learning on a fine-
grained and hierarchical manner to detect malicious behaviors.

6.1 DL-FHMC: System Design
The design of DL-FHMC consists of five components as illustrated
in Figure 11. Description of each component is in the following.

• CFG Extraction. This component is responsible for extracting
the CFGs of the software samples using Radare2, and present-
ing them as labeled CFGs for further analysis.

• Feature Extraction. The feature extraction component calcu-
lates 23 algorithmic features from the samples’ CFGs. Details
of the extracted features are in §4.1 and Table 2.

• Malware Detection. The malware detection component uti-
lizes the IoT malware detection models as in Table 3. The
purpose of this model is to classify the samples into malware
and benign. Samples classified as benign are directed to the
suspicious behavior detection process, while samples classified
as malware are directed to the classification model.

• Malware Classification. This component is fed by the sam-
ples classified as malware by the malware detection compo-
nent. The goal of this component is to classify the sample into
three IoT malicious families, i.e., Gafgyt, Mirai, and Tsunami.
The design and architecture of this component is similar to the
ones used for the classification task in DL-SSMC, except that
it only contain the malicious classes (i.e., no benign label).

• Suspicious Behavior Detector. This component detects a
potential suspicious behavior within the samples. Since the
adversary may generate AEs with the purpose of fooling the
system in assigning them to benign class, this component
further investigates the potential of suspicious behavior within
the benign-classified sample using the extracted CFG.

6.2 Suspicious Behavior Detector
Suspicious Behavior Detector is a graph mining-based technique
to investigate suspicious malicious patterns within software sam-
ples classified as benign. Figure 12 highlights the design of the
Suspicious Behavior Detector, which consists of four modules,
1 subgraphs mining, 2 pattern selection, 3 data representation,
and 4 suspicious behavior detection model. In the following, we
describe each module.
1 Subgraphs Mining: This module extracts common subgraphs
within each IoT malware family. Using gSpan, we extracted and
collected frequent subgraphs of a size range between 5 to 20
nodes from each malicious family. In particular, we used the
gSpan algorithm to extract subgraphs from the training samples
of each malicious family. This process took more than 160 hours
to finish and resulted in over 2,150,170 patterns distributed as:
22,953 for Gafgyt, 127,217 for Mirai, and over 2,000,000 for

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Benign

Malware

Benign

Gafgyt

Mirai

Tsunami

CFG Extraction Feature Extraction

Nodes Edges

Density S.Path

Centralities

Malware Detection

Prediction P
Tsunami
Mirai
Gafgyt

SBD
SuspiciousBenign

Classification

Fig. 11: DL-FHMC system flow. First, corresponding CFGs of the IoT software are extracted, then, 23 algorithmic features are
extracted from the CFGs. Afterward, an IoT malware detection system classifies samples into benign and malware, all malware samples
are directed to IoT malware classification system, while benign samples are directed into suspicious behavior detection system (SBD)
for further investigation.

Benign

Gafgyt

Mirai

Tsunami

Subgraphs Mining Patterns Selection
Size
Frequency
Coverage
Frequency-1

10,000
10,000
10,000

Gafgyt

Mirai

Tsunami

Representation

1 0 1 ... 0

Benign

Suspicious

Extracted Patterns SBDM

Fig. 12: Suspicious behavior detection system design. The design consists of four modules, a subgraphs mining module to extract
frequent subgraphs from three IoT malicious families. Afterward, the subgraphs are ranked by the pattern selection module, where the
top 10,000 patterns of each malicious family are selected. Further, the CFG of each sample is redirected to the Suspicious Behavior
Detector, and represented as a vector of size 30, 000. The vector representation is fed to Suspicious Behavior Detector Model (SBDM)
to be classified into benign and suspicious.

Tsunami families. The extracted frequent subgraphs (patterns) for
each malicious family are then subjected to further analysis.

2 Pattern Selection: This module ranks the extracted patterns
based on four factors: pattern size, frequency, coverage, and
inverse frequency. For example, large patterns are assigned higher
value since they are distinctive and more likely to be unique to
their family. Moreover, large patterns can be further decomposed
into smaller patterns. Further, the number of occurrences of a
pattern within a malicious family is considered as an indicator
of its maliciousness. On the other hand, less frequent patterns are
more likely to be function-oriented and solely contribute to the
functionality of the code rather than the general behavior of the
malware family. Therefore, we excluded all patterns that occurred
in less than 5% of the targeted family samples. The coverage of
the pattern is defined as

∑n
i=1 1/occurrencei−1, where n is a set

of samples in which the pattern occurred, and occurrencei is the
number of patterns contained within the sample i. For example,
if a sample contains only one pattern, that pattern will have the
highest rank. In addition, we compute the number of occurrences
for each pattern in the benign training samples. Note that benign
samples may have patterns similar to the ones in the malware due
to the abstract nature of the CFG and the considered size and
functionality of patterns. To ensure that all patterns hold some
behavioral characteristics of the malicious family, we excluded all
malicious patterns that appeared in more than ten benign samples.
We filtered the patterns and selected the top 10,000 ranked patterns
from each family to be its representative patterns. This results in
a total of 30,000 malware patterns for the three malware families.
We denote this set of patterns as P .

3 Data Representation: To investigate an IoT software, we find
whether each of the selected 30,000 patterns is a subgraph in
the CFG of the software using the VF2 subgraph isomorphism
algorithm [35]. Each sample is represented as a binary vector in
the space of the patterns extracted in the previous module, i.e.,
v ∈ {0, 1}|P |. Specifically, we represent each sample by a hot-
encoding vector v of size 30,000, where vi = 1 if the ith pattern is

a subgraph of the sample’s CFG, i.e., vi = 1 if pi ⊆ G , pi ∈ P .
Time-wise, representing a software’s CFG as a hot-encoding vec-
tor may require several minutes and up to several hours, depending
on its size (number of nodes) and structure.
4 Suspicious Behavior Detection Model: Suspicious Behavior
Detector model is a machine learning model trained on the feature
representations extracted from the training dataset shown in Ta-
ble 1. The goal of this module is to investigate suspicious behavior
within the sample. If the sample is classified as suspicious, further
analysis is required by an analyst or dynamic analysis approach.

Experimental Setup. We trained the Suspicious Behavior Detec-
tor model on the feature representation of the training dataset,
where all malicious samples are labeled as suspicious. We did
not incorporate AEs in the training process, as doing so may bias
the evaluation of the system toward samples generated using the
same approach (e.g., SGEA). Further, we generated AEs using
both GEA and SGEA, to force the detection model to misclassify
the IoT malware samples as benign, thereby, directing the samples
to the suspicious behavior detector component. The generation of
the AEs is similar to the process discussed in §5.

6.3 DL-FHMC: Evaluation and Results

The DL-FHMC system aims to establish a robust malware classifi-
cation approach through hierarchical levels of abstractions. In the
following, we evaluation the baseline classification performance,
alongside the robustness of DL-FHMC.

DL-FHMC: Baseline Performance. The first task of the system
is malware detection and classification. For the malware detection
module, we used the same approach as in section 5, achieving
the same baseline results (Table 3). All software classified as
malware are then forwarded to the classification module, where
they are labeled as Gafgyt, Mirai, or Tsunami. Table 9 shows the
overall performance of DL-FHMC on the clean dataset (i.e., non-
adversarial). We report the overall accuracy and F-1 score, along
with the individual classes true positive rates. We note that as we

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 9: DL-FHMC classifier evaluation (%) on clean dataset
for IoT malware classification task.

Architecture Acc. F-1 Benign Gafgyt Mirai Tsunami
RF 97.67 97.66 99.16 97.66 98.00 92.69
DNN 95.74 95.73 95.33 97.33 95.33 93.60
CNN 96.38 96.38 97.00 97.16 95.66 94.52

TABLE 10: DL-FHMC Suspicious Behavior Detector evaluation
(%) on benign and adversarial samples. DO refers to Data origin.

DO FPR GEA SGEA OverallSmall Median Large

RF

1 74.84 70.04 53.06 74.26 74.24
3 84.86 79.10 100 79.31 88.05
5 86.79 82.48 100 81.90 89.23
10 89.24 97.40 100 86.90 92.71

DNN

1 63.28 59.50 49.76 64.90 67.28
3 63.81 59.66 49.28 65.72 67.09
5 63.72 59.40 48.79 65.78 66.54
10 63.21 58.56 47.52 65.54 64.96

CNN

1 62.70 55.50 49.76 56.77 64.74
3 62.87 55.40 49.28 57.30 64.37
5 62.69 55.04 48.79 57.16 63.73
10 62.06 54.02 47.53 56.49 62.02

use the malware detector as of DL-SSMC, the model is susceptible
to adversarial attacks (i.e., GEA and SGEA). All benign samples,
alongside all successful AEs, are forwarded to the suspicious
behavior detection module.
DL-FHMC: Suspicious Behavior Detection Task. This com-
ponent aims to further investigate the benign-classified samples
based on patterns extracted from their structural components.
The task of suspicious behavior detector is to determine whether
a given sample is signaling a suspicion of malicious behavior,
and therefore it is operating as an AEs detection technique.
We evaluate the Suspicious Behavior Detector using the original
benign samples and malicious AEs. As shown in Table 10, RF-
based detector achieves an overall performance of 89.23% with
a benign accuracy of 95% (i.e., false positive rate of 5%), while
achieving a performance of 92.71% with a false positive rate of
10%. We note that the DNN- and CNN-based detectors are not
effective as modalities for suspicious behavior detection.

While GEA large graph-based AEs achieve 100% misclassi-
fication rate, DL-FHMC can detect them with 100% accuracy.
Further, while the detection performance for small GEA embed-
dings is relatively lower than the other configurations, the smaller
the xsel graph size is, the lower the success rate of the attack.
Figure 13 shows the performance of the detector with different
false positive rates (1− benign detection accuracy).

These results show that using DL-FHMC enables systematic
methods of coping with adversarial manipulation to malware.
When suspicious behavior is detected for a given sample, other
methods can be adopted to further analyze the sample in order
to provide a secure and robust evaluation of malicious activities.
In general, using CNN-based architecture for baseline malware
detection and classification tasks, while using RF-based model for
suspicious behavior detection provides the best trade-off between
the accuracy and robustness, as it minimizes the number of
samples misclassified by the malware detector, and forward fewer
samples toward the suspicious behavior detection system.

7 DISCUSSION

DL-FHMC: Cost of Security. The security of machine learning
algorithms is important for adoption in many applications. In

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

GEA-Small
GEA-Median
GEA-Large
SGEA

Fig. 13: DL-FHMC: RF-based suspicious behavior detector ROC
performance over GEA and SGEA attacks.

the malware classification field, AEs pose critical security im-
plications as emerging studies have shown that AEs can fool the
machine learning-based malware detection system [1], [20], [36].
However, limited studies have investigated potential defenses. In
this work, we show that launching adversarial attacks against
malware detection systems can lead to a misclassification rate
of as high as 100%. To cope with such adversarial settings and
capabilities, we introduced DL-FHMC that operates on multiple
levels of behavioral analysis of the software to ensure its security.
Since AEs are derived from a combination of benign and malware
components, detecting them is a challenging task and often comes
at the cost of misclassifying a portion of benign samples as
malicious, hence producing false alarms. For example, in our
experiments, we show the trade-off (i.e., the cost) of performance
of the suspicious behavior detector and the benign samples mis-
classified as adversarial, know as the sensitivity of the detector,
illustrated in Figure 13.

DL-FHMC Robustness. The suspicious behavior detector in DL-
FHMC consists of a machine/deep learning model trained on
the vector representations obtained by checking the existence of
predefined list of malicious subgraphs extracted and filtered using
a large dataset of IoT malware. Using the VF2 subgraph isomor-
phism algorithm [35] on a list of 30,000 malicious subgraphs, the
vector representation of the CFG is generated indicating whether
malicious patterns exist in the CFG. Ideally, the suspicious be-
havior detector represents the benign samples into a vector of all
zeros. In our dataset,≈ 85% of the benign samples are represented
as a vector of all zeros, indicating that none of the malicious
patterns were captured within them, i.e., none of 30,000 malicious
subgraph structure were found within their CFGs.

Considering the highly-accurate current state-of-the-art meth-
ods for detecting malware samples, our approach can be viewed as
a robust layer in top of such methods. We argue that in the context
of adversarial attacks, malware detection systems should be robust
against perturbation to the original samples. Otherwise, they will
suffer from the effects of AEs (i.e., misclassification). Since
running the VF2 subgraph isomorphism algorithm against the
30,000 subgraphs introduces a computational overhead, a malware
detection system benefits from our approach by testing samples
that are classified as benign (with low classification confidences)
indicating the possibility of adversarial scenario for evading the
malware detection process.

Since the suspicious behavior detector in DL-FHMC uses a

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

comprehensive list of malicious patterns, generating successful
AEs against DL-FHMC requires modifying the functionality of
the malware to conceal malicious patterns (i.e., subgraphs) that
exist in the CFG. This requires applying direct modifications to
the control flow of the program, which in turn, contrasts the
practicality and functionality requirements of a practical AE.

We note that detecting suspicious AEs is not a trivial process
even with using a subgraph isomorphism matching algorithm, and
it requires careful considerations in designing the system. For
example, due to the abstract graph modality, 15% of the benign
samples have suspicious subgraph structures within their CFGs.
This does not, in most cases, indicate an embedded malicious
functionality, but due to the diversity of the benign dataset, control
flow structures similar to the ones occurring in the malicious sam-
ples may be found. This motivates using machine/deep learning
methods to determine whether a sample is malicious considering
the generated binary vector representation of the 30,000 sub-
graphs. Moreover, considering the evolution of malware and the
emergence of new variants, the list of malicious subgraphs should
be continuously updated to incorporates emerging patterns.

Suspicious Behavior Detector as an Individual Modality. The
suspicious behavior detector is a machine learning-based CFG
subgraph malicious patterns detector. It has its own feature space
and representation, and independent model. While in this study
we consider the detection and classification modules similar to the
ones considered in DL-SSMC, the suspicious behavior detector is
not exclusive to them only. In reality, following the same process,
the detection and classification modules can be replaced with
models that operate under different data representations. Then,
forwarding all samples classified as benign to the suspicious
behavior detector enables the AEs detection.

CFG for Malware Classification. Using CFG-based represen-
tations for malware detection and classifications address differ-
ent challenges that may be raised by other representation tech-
niques [37]. For instance, binary representations are susceptible
to binary padding and injection. However, the added binaries
are not typically executed, and therefore will not appear in the
extracted CFG. Similarly, modifications on the header of the file,
and stripping the binaries will not affect the final CFG. In general,
changes that produce decision branches, such as conditions and
loops, are the only modifications that alter the extracted CFG.
We argue that adding API and system calls will simulate the
GEA and SGEA attacks, as they only result in introducing new
nodes, while the original structure is maintained, and thus can be
accurately detected by DL-FHMC. Generating CFG-based AEs
assumes a more powerful adversary, and even though we do not
address other attacks that generate AEs using the alteration of the
malware binaries or code, our work extend the robustness against
such methods as changing such methods do not conceal existing
malicious patterns from the CFG.

Potential Investigation Technique: Dynamic Analysis. For ac-
curate and fail-proof malware detection, every sample should be
analyzed dynamically and filtered based on its behavior. However,
dynamic analysis has its own downsides: 1 It requires setting
up of a sandboxed environment such that the execution of the
malware does not impact the underlining host system. 2 It is
costly in terms of time and memory. These make the dynamic
analysis techniques difficult to scale. Our proposed technique puts
forward a static analysis-based fine-grained hierarchical approach
towards malware detection. The samples classified as benign in
the first phase are sent to the suspicious behavior detector for

investigation using the deeper CFG based features (subgraphs).
The samples that are detected as suspicious in the second phase
may be forwarded to dynamic analysis for further investigation.
Statistically, and assuming a false positive rate of 5%, only 2.52%
(51 out of 2,019) of the normal samples, i.e., non-adversarial,
were identified as the ones to be directed for dynamic analysis,
thereby reducing the load on the dynamic analysis technique,
hence overcoming its potential difficulties.
Binary Obfuscation. Malware authors often use different packing
techniques, e.g., Ultimate Packer for Executables (UPX), to obfus-
cate different parts of the malware code base, such as functions and
strings. In obfuscated functions, the CFG would differ from the
actual unpacked malware. Thereby, the detector should be aware
of obfuscation and can accurately classify the obfuscated software
and examining the behavior of packed and unpacked software.

8 RELATED WORK

Malware Analysis. While efforts have been put towards malware
analysis and detection in general, IoT malware robustness analysis
still lacks exploring and investigation. Among the IoT malware
studies, efforts towards the analysis and detection of malicious
software are limited, particularly, from the lens of CFG. ManXu et
al. [38] proposed a CNN-based malware detection system for
the Android application from the semantic representation of the
graph (i.e., control and data flow graphs representations). In ad-
dition, Yang et al. [39] identified and detected Android malicious
behaviors throughout generating two-level behavioral representa-
tions built from the CFG graph and call graphs of the program.
Allix et al. [40] designed multiple machine learning classifiers
to detect Android malware using different textual representations
extracted from the applications’ CFGs. Further, Alasmary et al.
[33] conducted an in-depth CFG-based comparative study for the
Android and IoT malware. Similarly, Pa et al. [41] established the
first IoT honeypot and sandbox system, called IoTPOT, that run
over eight CPU architectures to capture the IoT attacks running
over Telnet protocol. Similarly, Caselden et al. [42] built an
algorithm that generates an attack from the representation of the
hybrid information and CFG applied to the program binaries.
Alam et al. [43] proposed a metamorphic malware analysis and
detection system that uses two different techniques that match
the CFGs of small malware and then address the change in the
opcodes frequencies. Moreover, Tamersoy et al. [44] proposed a
malware detection algorithm that identifies the executable files of
the malware and then computes the similarities between them to
partial dataset files from the Norton Community Watch. Then, they
construct graphs based on the measurement of inter-relationship
between these files. In addition, Wuchner et al. [45] proposed
a graph-based detection system that uses quantitative data flow
graphs generated from the system calls, and uses the graph
node properties, i.e., centrality metric, as a feature vector for the
classification between malicious and benign programs. Moreover,
they extended the work by using a compression-based mining
technique applied to the quantitative data flow graphs for malware
detection [46]. Moreover, Cen et al. [47] used Android API calls
as features extracted from the decompiled source code of the
software, and proposed a probabilistic logistic regression-based
model for malware detection.

Furthermore, Qiu et al. [48] surveyed existing machine/deep
learning-based android malware detection and classification sys-
tems. Their study shows a consistent trend of using neural
network-based architectures for extracting deep representations

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

and characteristics of the Android malware for the detection and
classification tasks, which provide an improvement in comparison
to the handcrafted features.
Adversarial Machine Learning. Machine/deep learning net-
works are widely used in security-related tasks, including mal-
ware detection [4], [11], [14], [49]. However, it has been shown
that deep learning-based models are vulnerable against adver-
sarial attacks [50]. Given that, it should be noted that such a
behavior can be a critical issue in malware detection systems,
where misclassifying malware as benign may result in disastrous
consequences [20], [51]. Various adversarial machine learning
attack methods in the context of image classification have been
introduced to generate AEs. For example, Goodfellow et al. [16]
introduced FGSM, a family of fast method attacks to generate AEs
that forces the model to misclassification. In addition, Carlini et
al. [52] proposed three L-norm-based adversarial attacks, known
as C&W adversarial attacks, to investigate the robustness of neural
networks and existing adversarial defenses. Similarly, Moosavi et
al. [17] proposed DeepFool, an L2 distance-based adversarial
iterative method to generate AEs with minimal perturbation.
Further, a critical application of the AEs is malware detection.
Recent studies investigated generating AEs in the context of
malware detection [36]. For instance, Grosse et al. [19] imple-
mented an augmented adversarial crafting algorithm to generate
AEs, misleading a CNN-based classifier to misclassify 63% of
the malware samples to benign. Additionally, in the context of
Android malware detection, Chen et al. [53] proposed a novel
approach to evade the Android malware detection systems by
applying optimal perturbations onto Android APK using a sub-
stitute model, utilizing the transferability characteristics of the
AEs. This allows generating AEs to non-differentiable models,
such as support vector machines and random forest. Applying
perturbation directly onto APK’s Dalvik bytecode, they achieved
a performance degradation of more than 95% against two state-of-
the-art detection approaches, MaMaDroid [54] and Drebin [55].

The detection of the AEs is challenging [56]. While work on
detecting AEs in the context of IoT malware detection is very
limit, multiple studies attempt to detect them in the context of
image classification [57], [58], [59], achieving detection accuracy
of 20% to 90%. In this study, we implemented DL-FHMC, a graph
mining-based fine-grained hierarchical learning approach for sus-
picious behavior detection, achieving an overall performance of
up to 92.71% in detecting CFG-based AEs.

9 CONCLUSION

This work introduces DL-FHMC, a novel hierarchical approach
for robust malware detection and classification with AEs detection.
To set out, first, an in-depth analysis of malware binaries is
conducted through constructing abstract structures using CFG,
which are analyzed from multiple aspects, such as the number of
nodes and edges, as well as graph algorithmic constructs, such
as average shortest path, betweenness, closeness, density, etc.
Then, we evaluate the robustness of the traditional CFG-based
IoT malware classification approaches against GEA and SGEA,
achieving a misclassification rate of up to 100%. To address this,
we use different graph mining techniques, CORK and gSpan,
to extract malicious discriminative graphs from the malicious
software, and use it as a modality to detect malicious behavior.
Through our evaluation, DL-FHMC achieves a high malware
detection and classification accuracy, as well as AEs detection
performance under different GEA and SGEA configurations, with
an overall AEs detection performance of up to 92.71%.

REFERENCES

[1] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based iot mal-
ware detection systems,” in 39th IEEE International Conference on
Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July
7-10, 2019, 2019.

[2] Ericsson. (2018) Erisson mobility report. Available at [Online]:
http://ericsson.com/en/press-releases/2018/6/5g-on-a-roll-cellular-iot-
deployments-ramping-up--ericsson-mobility-report.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proceedings of the 26th USENIX Security Symposium, 2017, pp. 1093–
1110.

[4] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-fidelity,
behavior-based automated malware analysis and classification,” Comput-
ers & Security, vol. 52, pp. 251–266, 2015.

[5] A. Gerber. (Retrieved, 2017) Connecting all the things in the Internet of
Things. [Online]. Available: https://ibm.co/2qMx97a

[6] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexloT: Towards providing contextual integrity to
appified IoT platforms,” in Proceedings of the 24th Annual Network and
Distributed System Security Symposium, NDSS, 2017, pp. 1–15.

[7] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust mal-
ware detection for Internet Of (Battlefield) Things devices using deep
eigenspace learning,” IEEE Transactions on Sustainable Computing,
vol. 4, no. 1, pp. 88–95, 2019.

[8] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! A case study on android malware detection,” IEEE Transaction
on Dependable and Secure Computing, vol. 16, no. 4, pp. 711–724, 2019.

[9] S. Siby, R. R. Maiti, and N. O. Tippenhauer, “IoTScanner: Detecting
privacy threats in IoT neighborhoods,” in Proceedings of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security, 2017, pp.
23–30.

[10] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
effective and efficient behavior-based android malware detection and
prevention,” IEEE Transaction on Dependable and Secure Computing,
vol. 15, no. 1, pp. 83–97, 2018.

[11] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and detecting emerg-
ing internet of things malware: a graph-based approach,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 8977–8988, 2019.

[12] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. Nyang, and D. Mohaisen, “Soteria: Detecting adversarial examples in
control flow graph-based malware classifier,” in 40th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2020, pp. 1296–
1305.

[13] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer and
communications security, 2007, pp. 116–127.

[14] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting
the rise of DGA-based malware,” in Proceedings of the 21th USENIX
Security Symposium, 2012, pp. 491–506.

[15] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the ACM on Asia Conference on Computer and
Communications Security, AsiaCCS, 2017, pp. 506–519.

[16] C. S. Ian J. Goodfellow, Jonathon Shlens, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations., 2015, pp. 1–11.

[17] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2574–2582.

[18] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), 2016, pp. 372–387.

[19] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
“Adversarial examples for malware detection,” in Computer Security
- ESORICS - 22nd European Symposium on Research in Computer
Security, 2017, pp. 62–79.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

http://ericsson.com/en/press-releases/2018/6/5g-on-a-roll-cellular-iot-deployments-ramping-up--ericsson-mobility-report
http://ericsson.com/en/press-releases/2018/6/5g-on-a-roll-cellular-iot-deployments-ramping-up--ericsson-mobility-report
https://ibm.co/2qMx97a

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[20] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and
A. Mohaisen, “Subgraph-based adversarial examples against graph-
based iot malware detection systems,” in International Conference on
Computational Data and Social Networks. Springer, 2019, pp. 268–
281.

[21] Q. Zhang and D. S. Reeves, “Metaaware: Identifying metamorphic
malware,” in Proceedings of the Twenty-Third Annual Computer Security
Applications Conference, ACSAC, 2007, pp. 411–420.

[22] Developers. (Retrieved, 2018) the ultimate packer for executables.
[Online]. Available: https://upx.github.io/

[23] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy, vol. 5,
no. 2, pp. 32–39, 2007.

[24] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With
great training comes great vulnerability: Practical attacks against transfer
learning,” in Proceedings of the 27th USENIX Security Symposium,
USENIX Security 2018, 2018, pp. 1281–1297.

[25] Developers. (Retrieved, 2019) Radare2. [Online]. Available: http:
//www.radare.org/r/

[26] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. J. Smola,
L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt, “Discriminative frequent
subgraph mining with optimality guarantees,” Statistical Analysis and
Data Mining, vol. 3, no. 5, pp. 302–318, 2010.

[27] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” in
Proceedings of the 2002 IEEE International Conference on Data Mining,
2002. Proceedings., 2002, pp. 721–724.

[28] Developers. (2019) Cyberiocs. Available at [Online]: https://
freeiocs.cyberiocs.pro/.

[29] ——. (2019) VirusTotal. Available at [Online]: https:
//www.virustotal.com.

[30] VirusShare. [Online]. Available: https://virusshare.com/
[31] Developers. (2019) Github. Available at [Online]: https://github.com/.
[32] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A

tool for massive malware labeling,” in Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, RAID,
2016, pp. 230–253.

[33] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen,
“Graph-based comparison of IoT and android malware,” in Proceedings
of the 7th International Conference on Computational Data and Social
Networks, CSoNet, 2018, pp. 259–272.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[35] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)graph
isomorphism algorithm for matching large graphs,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–
1372, 2004.

[36] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples in
malware detection,” in 2019 IEEE Security and Privacy Workshops, SP
Workshops, 2019, pp. 8–14.

[37] D. Park and B. Yener, “A survey on practical adversarial examples for
malware classifiers,” arXiv preprint arXiv:2011.05973, 2020.

[38] Z. Xu, K. Ren, S. Qin, and F. Craciun, “CDGDroid: Android malware
detection based on deep learning using CFG and DFG,” in Proceedings
of the 20th International Conference on Formal Engineering Methods,
ICFEM, 2018, pp. 177–193.

[39] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. A. Porras, “DroidMiner:
Automated mining and characterization of fine-grained malicious be-
haviors in android applications,” in Proceedings of the 19th European
Symposium on Research in Computer Security, 2014, pp. 163–182.

[40] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon,
“Empirical assessment of machine learning-based malware detectors for
android - measuring the gap between in-the-lab and in-the-wild validation
scenarios,” Empirical Software Engineering, vol. 21, no. 1, pp. 183–211,
2016.

[41] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” Journal of Information Processing JIP, vol. 24, no. 3, pp. 522–
533, 2016.

[42] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song,
“HI-CFG: construction by binary analysis and application to attack
polymorphism,” in Proceedings of the 18th European Symposium on
Research in Computer Security. Springer, 2013, pp. 164–181.

[43] S. Alam, R. N. Horspool, I. Traoré, and I. Sogukpinar, “A framework
for metamorphic malware analysis and real-time detection,” Computers
& Security, vol. 48, pp. 212–233, 2015.

[44] A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large
scale malware detection by mining file-relation graphs,” in Proceedings

of the the 20th ACM International Conference on Knowledge Discovery
and Data Mining, KDD, 2014, pp. 1524–1533.

[45] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust and effective malware
detection through quantitative data flow graph metrics,” in Proceedings of
the Detection of Intrusions and Malware, and Vulnerability Assessment
Conference, DIMVA, 2015, pp. 98–118.

[46] T. Wüchner, A. Cislak, M. Ochoa, and A. Pretschner, “Leveraging
compression-based graph mining for behavior-based malware detection,”
IEEE Transaction on Dependable and Secure Computing, vol. 16, no. 1,
pp. 99–112, 2019.

[47] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discriminative
model for android malware detection with decompiled source code,”
IEEE Transaction on Dependable and Secure Computing, vol. 12, no. 4,
pp. 400–412, 2015.

[48] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A survey of
android malware detection with deep neural models,” ACM Computing
Surveys (CSUR), vol. 53, no. 6, pp. 1–36, 2020.

[49] A. Mohaisen and O. Alrawi, “Unveiling zeus: automated classification of
malware samples,” in Proceedings of the 22nd International World Wide
Web Conference, WWW, 2013, pp. 829–832.

[50] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distri-
butional smoothing with virtual adversarial training,” in International
Conference on Learning Representations., 2016, pp. 1–12.

[51] A. Abusnaina, D. Nyang, M. Yuksel, and A. Mohaisen, “Examining the
security of ddos detection systems in software defined networks,” in Pro-
ceedings of the 15th International Conference on emerging Networking
EXperiments and Technologies, 2019, pp. 49–50.

[52] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2017, pp. 39–57.

[53] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” IEEE Transactions on Information Foren-
sics and Security, vol. 15, pp. 987–1001, 2019.

[54] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models (extended version),” ACM Transac-
tions on Privacy and Security (TOPS), vol. 22, no. 2, pp. 1–34, 2019.

[55] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[56] N. Carlini and D. A. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, AISec@CCS,
2017, pp. 3–14.

[57] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in 25th Annual Network and Dis-
tributed System Security Symposium, NDSS, 2018.

[58] X. Li and F. Li, “Adversarial examples detection in deep networks
with convolutional filter statistics,” in IEEE International Conference on
Computer Vision, ICCV, 2017, pp. 5775–5783.

[59] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in 5th International Conference on Learning
Representations, ICLR, 2017.

Ahmed Abusnaina is a Ph.D. student in the Department of Computer
Science at the University of Central Florida. He obtained his B.Sc. in
Computer Engineering from An-Najah National University, Palestine, in
2018. His research interests include software security, machine learn-
ing, and adversarial machine learning.

Mohammed Abuhamad received a Ph.D. degree in Computer Science
from the University of Central Florida in 2020. He also received a Ph.D.
degree in Electrical and Computer Engineering from INHA University
in 2020. He is currently an assistant professor of Computer Science
at Loyola University Chicago. His research interests include AI/Deep-
Learning-based Applications in Information Security, Software and Mo-
bile/IoT Security, and Adversarial Machine Learning.

Afsah Anwar is a Ph.D. candidate in the Department of Computer
Science at the University of Central Florida. He obtained his B.S. from
Jamia Millia Islamia University, New Delhi, India, in 2014. Before starting
his Ph.D., Afsah was working as a Data Analyst (C) for Apple. His
research interests include binary analysis, vulnerability analysis, and
malware analysis.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

https://upx.github.io/
http://www.radare.org/r/
http://www.radare.org/r/
https://freeiocs.cyberiocs.pro/
https://freeiocs.cyberiocs.pro/
https://www.virustotal.com
https://www.virustotal.com
https://virusshare.com/
https://github.com/

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3097296, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Hisham Alasmary is an Assistant Professor at King Khalid University.
He obtained his Ph.D. from the Department of Computer Science at the
University of Central Florida in 2020, and his M.Sc. degree in Computer
Science from The George Washington University, in Washington, D.C.,
USA, in 2016. His research interests include Software Security, IoT
Security and Privacy, ML/DL Applications in Information Security, and
Adversarial Machine Learning.

Rhongho Jang received his Ph.D. in the department of computer sci-
ence at the University of Central Florida, in 2020. He also received his
B.S., M.E, and Ph.D. (first) from the Inha University of South Korea in
2013, 2015, and 2020, respectively. He is currently an assistant profes-
sor in the department of computer science at Wayne State University.
His research interests lie in the area of software defined networks,
network security, traffic measurement, and mobile security in general.

Saeed Salem received his Ph.D. in computer science from Rensselaer
Polytechnic Institute, New York. He is currently an associate professor
at North Dakota State University. Dr. Salem’s research is in the broad
areas of graph mining and machine learning with a focus on developing
algorithms for mining frequent and significant graphs. Dr. Salem’s group
developed enumeration algorithms for mining all frequent subgraphs,
cross-graph dense graphs, and approximate frequent subgraphs from
heterogeneous graphs.

DaeHun Nyang received a B.Eng. degree in electronic engineering from
Korea Advanced Institute of Science and Technology, M.S. and Ph.D.
degrees in computer science from Yonsei University, Korea in 1994,
1996, and 2000 respectively. He has been a senior member of the engi-
neering staff at Electronics and Telecommunications Research Institute,
Korea, from 2000 to 2003. Since 2003, he has been a full professor
at Computer Information Engineering Department of Inha University,
Korea where he is also the founding director of the Information Security
Research Laboratory. He is a member of the board of directors and an
editorial board of ETRI Journal and also Korean Institute of Information
Security and Cryptology. Dr. Nyang’s research interests include AI-
based security, network security, traffic measurement, privacy, usable
security, biometrics and cryptography.

David Mohaisen earned his M.Sc. and Ph.D. degrees from the Uni-
versity of Minnesota in 2012. He is currently an Associate Professor
at the University of Central Florida, where he directs the Security and
Analytics Lab (SEAL). Before joining UCF in 2017, he was an Assistant
Professor at SUNY Buffalo (2015–2017) and a Senior Research Scien-
tist at Verisign Labs (2012–2015). His research interests are in the areas
of networked systems security, online privacy, and measurements. He
is an Associate Editor of IEEE TMC, IEEE TCC, and IEEE TPDS. He
is a senior member of both ACM (2018) IEEE (2015), a Distinguished
Speaker of ACM, and Distinguished Visitor of IEEE.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on March 18,2022 at 19:06:18 UTC from IEEE Xplore. Restrictions apply.

