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ABSTRACT
Malware is one of the serious computer security threats. To protect
computers from infection, accurate detection of malware is essen-
tial. At the same time, malware detection faces two main practical
challenges: the speed of malware development and their distribu-
tion continues to increase with complex methods to evade detection
(such as a metamorphic or polymorphic malware). This research uti-
lizes various characterizing features extracted from each malware
using static and dynamic analysis to build seven machine learning
models to detect and analyze packed windows malware. We use
a large-scale dataset of over 107,000 samples covering unpacked
and packed malware using ten different packers. We examined the
performance of seven machine learning techniques using 50 dy-
namic and static features. Our results show that packed malware
can circumvent detection when a single analysis is performed while
applying both static and dynamic methods can help improve the
detection accuracy around 2% to 3%.
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1 INTRODUCTION
In recent years, there has been a continuously increasing trend of
malware infections posing a significant threat to information secu-
rity of Internet users. Malware shows a rapid development trend
with an increasing number of variants and a wide range of spread
and influence. These rising challenges make traditional malicious
code detection methods fall back on meeting the requirements for
malware detection [3, 5].

Generally, typical malware detection methods can be divided
into three main categories: signature-based, behavioral-based, and
heuristic-based methods [2, 10]. Signature-based detection methods
are based on the idea of pattern matching, generating a unique
signature for each known malicious code to create a malicious code
library. These signatures include many different attributes such as
filenames, content strings, or bytes, and are also explored from the
perspective of excluding security vulnerabilities created by these
malicious codes to protect system security. When encountering an
unknown software, the signature of a tested sample is compared
against the malicious code library. If the signature triggers a match,
it is flagged as malicious software. The advantages include fast
detection time and accurate detection with a low false-positive rate.
The disadvantage, however, is dealing with unseen samples and
variants, which requires a constant update of the signature database.
This updating and maintaining of the signature database requires
enormous efforts and resources. Malicious code programmers can
bypass this detection mechanism only through simple variants such
as obfuscation, compression, and packing.

The behavioral detection methods explore unique malicious be-
havioral characteristics that can trigger a malicious activity. This
is done through observation and research on malware to identify
common behaviors that are unique to malicious activities. These
methods predict most unknown malware accurately, but they can-
not identify the names and families of detected malware. Moreover,
such methods are difficult to implement. On the other hand, heuris-
tic malware detection methods adopt machine learning techniques
to learn the behavior of malware through in-depth analysis of traits
that are extracted using static or/and dynamic analyses. These
methods provide efficient and accurate detection of malware [2, 5].
However, considering the current trend of continuous growth of
malware and variants, and the large availability of tools that enable
circumventing these methods, it becomes increasingly challenging
to provide reliable and adaptable malware detection engines [3, 6].
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Machine learning (ML)-based malware detection methods have
attracted the research community to explore solutions and analyze
their effectiveness against evolving challenges. These methods rely
on static analysis or/and dynamic artifacts. In this research, we
explore the effects of different packing tools on the performance
of ML-based methods using both static and dynamic analyses. We
use a large-scale dataset of 107,599 windows executable programs,
including 70,062 packed samples using ten packers, namely Obsid-
ium, Themida, PECompact, Petite, UPX, kkrunchy, MPRESS, tElock,
PELock, and dolphin-dropper-3.
Contributions. The contributions of this work are as follows:
• We investigate the performance of seven machine learning-based
malware detection methods using a large-scale dataset of 107,599
executable samples. Our investigation includes studying the ef-
fects of packing techniques on the performance of such methods.

• We examine the effect of different malware analyses, i.e., static,
dynamic, and combination of both, on the machine learning
detection methods when packing is involved. We extracted 36
static features and 14 dynamic features from each malware across
the entire dataset.

• Adopting various analyses and machine learning methods, we
evaluated the importance of features for accurate detection.

2 MLxPack: DATASET AND METHODS
2.1 Dataset
In this work, we use the malware dataset provided by Aghakhani
et al. [4]. The experiments are conducted to analyze the machine
learning-based malware detection methods on windows packed
and unpacked malware. The dataset consists of the dataset from the
EMBER, and a commercial vendor [7], as well as the dataset that is
made by labeling the executable as packed and unpacked using com-
mercial and publicly available packers: Obsidium, Themida, PECom-
pact, Petite, UPX, kkrunchy, MPRESS, tElock, PELock, and dolphin-
dropper-3. The detailed information about the packed dataset is
shown in Table 1. Overall, the dataset includes 107,599 executable
programs that are divided into 22,544 packed benign, 47,518 packed
malicious, 12,472 unpacked benign, and 25,065 unpacked malicious.

2.2 Static and Dynamic Feature Extraction
Static features. To gain a deeper understanding of malware, it is
essential to examine its static properties. Conducting such analysis
is relatively easy since it does not require running the malware.
The static analysis aims to study artifacts such as hashes, embedded
strings, embedded resources, header information, among others.
Our static analysis is conducted to extract information from the Con-
trol Flow Graphs (CFGs) of software samples. Using radare2’s [16]
Python API – r2pipe, we extracted the CFGs and applied various
feature extraction methods to obtain graph-level features such as
nodes, edges, density, betweenness, shortest path, etc.Moreover, we
extended the static features with the top used ten libraries based on
their frequency and relocations(relocs) from imports (i.e., symbols
imported from libraries). Table 2 shows the detailed information
of the 36 extracted features. We categorized these 36 features into
eleven groups, including ten libraries from the imports section
(kernel32.dll, user32.dll, advapi32.dll, shell32.dll, ole32.dll, gdi32.dll,
comctl32.dll, ntdll.dll, msvcrt.dll, oleaut32.dll), centrality, shortest

path, network density, connected components(CC), average degree
connectivity, relocs, and the number of edges and nodes. As for
centrality and shortest path, we extracted the minimum, maximum,
median, mean, and standard deviation values.
Dynamic features. Dynamic malware analysis allows malware
analysts to monitor the execution of malware at every step. The
malware is usually executed in a sandbox or VM, and then the pro-
cess behavior, network behavior, file behavior, and other dynamic
behaviors during its operation are extracted. In terms of behavioral
analysis, we extracted the number of APIs, DLLs, calls, and mod-
ules. In our experiments, we utilized the cuckoo reports that are
generated using cuckoo sandbox [18]. These reports contain differ-
ent information about the target software, such as various static,
behavioral, and network analyses, the dropped files and buffers,
process memory, VM memory dump, etc. We used the dynamic
features that are based on behavioral, static, and network analyses
for our experiment. For static features, we extracted the number of
PE imports, keys, and PE resources used by executable programs.
As for the network features, we used the network usages in terms
of UDP, DNS, ICMP, TCP, Hosts, and domains. Table 3 shows the
adopted 14 dynamic features.

2.3 Machine Learning Methods
Based on the static and dynamic analysis, we applied several ma-
chine learning models for windows malware detection. The fol-
lowing seven machine learning algorithms are applied: 1 Support
Vector Machine (SVM), 2 Decision Tree (DT), 3 Logistic Regres-
sion (LR), 4 Random Forest (RF), 5 K-Nearest Neighbors (KNN),
6 artificial neural network (ANN), and 7 Adaptive Boosting (Ad-
aBoost) in our experiments. All the hyperparameters used for those
machine learning algorithms are provided in Table 4.
Support Vector Machine. Support vector machine is a very pow-
erful machine learning technique with multiple functions, capable
of dealing with linear or non-linear classification problems with a
low generalization error rate, which means that it has good learn-
ing and generalization ability. To select the margin hyperplane to
classify training points correctly, 10 is used for the regularization
parameter and 0.01 for the kernel coefficient.
Decision Tree. Decision tree is a machine learning method that
adopts a tree structure in which each internal node represents a
judgment on an attribute, each branch represents the output of a
judgment result, and finally, each leaf node represents a classifi-
cation result. The decision tree is easy to understand and explain,
can be visualized and analyzed, and can make feasible and effective
results for large data sources in a relatively short time. Generally,
all default hyperparameters are used for the algorithm except for
max_depth, which was set to 20 to cover more depth.
Logistic Regression. Logistic Regression is a classification tech-
nique for binomial outcomes. This technique is fast, simple, easy
to understand, suitable for binomial classification problems, and
memory-efficient. 10 is used as the value for the inverse of regu-
larization strength to give a high weight to the training data and a
lower weight to the complexity penalty, while default values are
used for the other hyperparameters.
Random Forest. Random Forests is an ensemble learning method
based on Bagging, which can handle classification and regression
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Table 1: Distribution of benign andmali-
cious samples using various packers.

Packer name Benign Malicious
PELock 3,350 4,157
tElock 1,175 6,816
MPRESS 1,767 2,950
UPX 2,558 5,377
dolphin-dropper-3 2,637 5,245
PECompact 1,202 5,947
Kkrunchy 2,057 4,916
Petite 2,357 4,396
Themida 2,611 4,252
Obsidium 1,830 3,462
Total 21,544 47,518

Table 2: Distribution of static features
from CFGs and radare2 imports.

Feature category # of features
Imports libraries 10
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Network Density 1
Connected components 1
Average degree connectivity 1
Number of Edges 1
Number of Nodes 1
Relocs 1
Total 36

Table 3: Dynamic features based
on their category analysis.

Category Feature names

Behavioral analysis

apistats
dll_loaded
calls
modules

Static analysis pe_imports
pe_resources

Network analysis

networks
UDP
DNS_ servers
ICMP
TCP
Hosts
DNS
Domains

mpress upxtelockpelock
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Figure 1: Distribution of benign and malicious samples in packed software dataset. The packed software dataset include sam-
ples from 10 packers.

problems well. It comprises many decision trees, and there is no
correlation between different decision trees. It can run efficiently
on large data sets with high accuracy. We used default hyperparam-
eters for this algorithm.
K-Nearest Neighbors. The core idea of the KNN algorithm is
that in a space containing an unknown sample, the data type of
the sample can be determined according to the data type of the k
samples closest to the sample. The KNN algorithm can be used not
only for classification but also for regression. It is easy to implement,
has no need to estimate parameters, and supports incremental
learning. For this algorithm, leaf size and number of neighbors are
set to 40 and 4, respectively, to reduce the number of neighbors and
select the closest ones.
Artificial Neural Network. We used a Multilayer Perceptron
(MLP) to represent an artificial neural network, which has a forward
structure that maps a set of input data to a set of output data. MLP
can be regarded as a directed graph composed of multiple node
layers, and each layer is fully connected to the next layer. Each
node is a neuron with a nonlinear activation function. MLP can be
applied to complex non-linear problems and works well with a large
dataset. The predictions are quick with high accuracy. The initial
learning rate is set to 0.0007 to control the step size in updating the
weights. Furthermore, we increased the alpha from default 0.0001
to 0.1 to fix the high variance (a sign of overfitting).

Adaptive Boosting. Adaptive Boosting is an iterative boosting al-
gorithm. Its core idea is to train different classifiers (weak classifiers)
for the same training set, and then combine these weak classifiers
to form a stronger final classifier. Different classification algorithms
can be used as weak classifiers. The weight of each classifier is fully
considered by AdaBoost. We used the default hyperparameters for
this technique.
Experiment Settings:

1 Dataset Distribution. For our study, we divided the dataset
into two categories packed and unpacked (benign/malicious). We
also studied the ten packers separately and combined.

2 Handling Class Imbalance. As shown in Figure 1, there are
almost twice more malicious executables than the benign ones. To
overcome the issue, we applied Synthetic Minority Oversampling
Technique (SMOTE) [13] to oversample the minority class. SMOTE
selects close samples by drawing a boundary line between those
samples in their feature space and creates new samples along that
line. Specifically, SMOTE selects a random example among samples
from the minority class and finds its 𝐾 nearest neighbor samples
from the same class. All generated synthetic samples are based on a
convex combination of those selected samples. In our experiments,
we utilize SMOTE to resample all classes but the majority class
using 5 nearest neighbors.
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Table 4: Settings and hyperparameters used for building ML models. All settings follow the default implementation in scikit-
learn library with the modifications highlighted in the table.

Machine Learning Algorithm Hyperparameter

Support Vector Machine C: 10, kernel: ‘rbf’, degree: 3, gamma: 0.01, tol: 1e-3, cache_size: 200, max_iter: -1, decision_function_shape: ‘ovr’
Decision Tree Classifier criterion: ‘gini’, splitter: ‘best’, max_depth: 20, min_samples_split: 2, min_samples_leaf: 1
Logistic Regression Penalty: l2, tol: 1e-4, C:10, solver: ‘lbfgs’, max_iter: 100, multi_class: ‘auto’
Random Forest n_estimators: 100, criterion: ‘gini’, min_samples_split: 2, min_samples_leaf: 1, max_features: ‘auto’
K-Nearest Neighbors n_neighbors: 4, weights: uniform’, algorithm: auto’, leaf_size: 40, p: 2, metric: ‘minkowski’
Artificial Neural Network hidden_layer_sizes: (100,), activation: ‘relu’, solver: ‘adam’, alpha: 0.1, batch_size: ‘auto’, learning_rate_init: 0.0007,

learning_rate: ‘constant’, power_t: 0.5, max_iter: 200, tol: 1e-4, momentum: 0.9, validation_fraction: 0.1, beta_1: 0.9,
beta_2: 0.999, epsilon: 1e-8, n_iter_no_change: 10, max_fun: 15000

Adaptive Boosting n_estimators: 50, learning_rate: 1.0, algorithm: ‘SAMME.R’

3 Training/Testing Data Splitting. Before machine learning
algorithms are applied, the dataset is split into training and testing
datasets in a stratified fashion with 70% and 30%, respectively.

4 Evaluation Metrics. The machine learning results are com-
pared based on precision, recall, and F1 score. The precision rate,
Precision = TP/TP+FP where TP is the true positive and FP is the
false positive, indicates how many of the samples whose predic-
tions are positive, are truly positive samples. The Recall, Recall =
TP/TP+FN where FN is the false negative, indicates howmany sam-
ples with a positive true label are predicted by the model. F1-score
is a weighted average of precision and recall, and it is calculated as
F1-score = (2 × Precision × Recall)/(Precision + Recall).

2.4 Feature Importance
To explain what features are essential in the prediction phase, we
adopt Dalex [9] for each machine learning algorithm. Dalex is a
combination of the Explainable Artificial Intelligence (XAI) tools in
terms of the LOCO (leave-one covariate out) approach to generate
explainabilities. Generally, themodel and dataset to be explained are
passed to the metric, the performance of the model is thenmeasured
by conducting new training processes with the newly-generated
data and the inversion of each attribute of the data in an iterative
and unitary way, hence each attribute measurement is crucial to
the model regarding the performance. The metric is applied based
on the features: static, dynamic, and hybrid (static+dynamic) with
packed, unpacked, and whole dataset (packed+unpacked). The final
result is extracted based on the intersection of the results of those
features, and they are provided in Figure 2.

Observing dynamic feature importance based on the machine
learning models, several features are found significant by the ma-
jority of models, such as #modules_behavior, #pe_resources_static,
#dll_loaded_behavior, #calls_behavior, #apistats_behavior, #networks,
udp, hosts. From the perspective of static feature importance, com-
ctl32.dll is shown to be the most important feature by all models,
while ntdll.dll is considered less important by only one model (i.e.,
KNN). Considering the results of hybrid features, #pe_resources_static,
modules_behavior, #dll_loaded_behavior are the most important fea-
tures to the majority of machine learning models. Based on our
observation, the dynamic features contribute highly to the correct
prediction of the malware.

3 MLxPack: EXPERIMENTS AND RESULTS
In the experiments, we divided the dataset into four big categories:
whole dataset, unpacked dataset, packed dataset, and ten packers’
dataset.We apply the dynamic, static, and hybrid(i.e., dynamic+static)
features to build classifiers and obtain the final precision, recall, and
F1 scores. Each experiment is performed ten times, and each time
the dataset is randomly split to perform unbiased model evaluation,
and then we report the average results.

3.1 Experiment 1: Packing-Absent Analysis
This experiment aims to evaluate the features and machine learning
methods for detecting malware without the presence of packing.
To this end, we use only unpacked benign/malware samples for
extracting features and building machine learning models. The
results are shown in Figure 3-(A).
Using Static Analysis. Without packed samples, the static analy-
sis provided adequate results for all models. This experiment shows
that MLP achieves good results with 91.3% precision, 87.6% recall,
and 89.4% F1 score. RF and KNN achieved similar results. The re-
sults of LR and AdaBoost are relatively less than ideal, with the
lowest precision, recall and F1 score.
Using Dynamic Analysis. Almost all models achieved better
results using dynamic features compared to those achieved by static
features. This indicates the ability of dynamic analysis to capture
behavioral patterns that accurately detect malware. For instance, we
can clearly observe that the best classifier, i.e., RF, in this experiment
with dynamic features has a precision of 95.2%, a recall score of
97%, and an F1 score of 96%. Compared with the static features
experiment, the performance of RF classifier has improved by 2.52%,
7.68%, and 5.19% for the precision, recall, and F1 scores, respectively.
Using Hybrid Analysis(static+dynamic). Compared to the re-
sults of static and dynamic analyses, using features from both anal-
yses enable machine learning models to achieve higher accuracy.
RF and DT showed the best results among the seven classifiers with
all 95%. KNN and AdaBoost also perform well as their precision,
recall, and F1 scores are around 90%. SVC has the highest precision
score with 99.1% but with a slightly low recall (74.4%) and F1 score
of 85%. The result of MLP is still the lowest, with a precision score
of 86.1%, a recall of 75.5%, and an F1 score of 79.6%.
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Figure 2: The result of the feature importance metric, showing the feature importance results of static, dynamic, and hybrid
features from left to right. RF, DT, SVM, LR, MLP, KNN and AdaBoost are the acronym of seven machine learning algorithms:
Random Forest, Decision Tree, Support Vector Machine, Logistic Regression, Multilayer Perceptron, K-Nearest Neighbors and
Adaptive Boosting, respectively. comctl32.dll and ntdll.dll are among the most important static features, while UDP, modules,
andnetworks are among themost important dynamic features.Modules and pe_resources are highly-scored for hybridmethods.
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Figure 3: The Experimental results of applying hybrid features, dynamic features, and static features on unpacked dataset (A),
packed dataset (B), and the entire dataset (C). Using combination of static and dynamic features improve the performance.

3.2 Experiment 2: Packing-Informed Analysis
This experiment evaluates the features and machine learning meth-
ods for detecting malware when only packed software exists. We
used a dataset of packed software of benign and malware samples
for ten packers. We applied the same feature extraction process for
static and dynamic analyses and machine learning techniques. The
results are shown in Figure 3-(B). All the experimental results in the
packed dataset, i.e., precision, recall, and F1-score, have declined

compared to the unpacked dataset. In the process of extracting
static features from the packed dataset, we observed that according
to each packing tool, the structures of CFGs across samples are
highly similar in degree and depth. Therefore, many of the static
features were considered less significant. The result of this exper-
iment shows that the packing tools hide many software features,
making it difficult for analysts to extract valuable information.
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Figure 4: The figure shows the results of applying hybrid, dynamic, and static features on different packers’ dataset. The
highlighted scores (in a brighter color) are the best results of each packer.

Using Static Analysis. All classifiers have similar precision, re-
call, and F1 scores with lower values compared to using unpacked
samples. For example, the results of RF, DT, SVC, LR, and AdaBoost
are all around 73%∼76%.
Using Dynamic Analysis. Using dynamic features, some classi-
fiers achieved an improved performance compared to using static
features. For example, RF and DT achieved F1-scores of approxi-
mately 85% and 88%. However, LR achieved the worst result, with
a recall score of less than 26% and an F1-score of 36.3%.

Using Hybrid Analysis(static+dynamic). Using a combination
of both static and dynamic features, all classifiers achieved higher
performance (i.e., 2% to 3% higher) compared to those obtained
by dynamic features. In this experiments, LR and MLP were the
lowest-performing models, with low recall and F1 scores, although
the precision was 62.1% and 79.5%, respectively. RF showed the best
performance with almost all scores around 90%.
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3.3 Experiment 3: Packing-Oblivious Analysis
This experiment aims to evaluate the features and machine learn-
ing methods for detecting malware regardless of the knowledge
of packing. To this end, we use the whole dataset for extracting
features and building machine learning models. The results are
shown in Figure 3-(C).

Using Static Analysis. In the experiments where static features
were used, all the classifiers achieved detection F1-score in the
range of 70% to 82%. Generally, classifiers maintain relatively similar
performance. RF and DT are relatively the best classifiers.

Using Dynamic Analysis. In the experiments with dynamic fea-
tures, RF, DT, KNN, and AdaBoost achieved detection F1-score over
80%, with RF getting the best results. LR and MLP achieved the
worst results, where the precision of LR and MLP were 78.9% and
87.1%, respectively, and the recall scores were 36.4% and 52.8% for
LR and MLP, respectively.

Using Hybrid Analysis(static+dynamic). When using a com-
bination of features from both static and dynamic analyses, most
classifiers, i.e., RF, DT, KNN, and AdaBoost, provided high perfor-
mance. As you can see in Figure 3-(C), the performance of these four
classifiers reached over 80%. RF achieves the best results, precision
of 94.2%, recall of 92.3%, and F1 score of 93.2%. On the contrary,
the results of LR are not satisfactory, with the precision being 76%,
recall and F1 being 44.2% and 56%, respectively.

3.4 Experiment 4: Packing-Specific Analysis
This experiment evaluates different analyses and machine learn-
ing methods for detecting packed malware using a specific pack-
ing tool. We used separate datasets of benign/malware samples
for each of the ten considered packers, i.e., Obsidium, Themida,
PECompact, Petite, UPX, kkrunchy, MPRESS, tElock, PELock, and
dolphin-dropper-3. The results are shown in Figure 4.

Using Static Analysis. Features such as relocs and imports li-
braries provide different values, which are considered as important
features by several ML classifiers (see Figure 2), while the values of
other features are less distinctive across samples. Figure 4 demon-
strates the performance of the ML classifier based on the dataset of
each packer. Unlike other results, the performance of ML classifiers
on the dolphin and telock dataset is low. The low performance could
be due to the indistinctive static features produced after packing,
including the relocs and imports of libraries.

Using Dynamic Analysis. Among ML classifiers, superior per-
formance can be seen in the results of RF, DT, and AdaBoost models.
In the second place, KNN and SVC models performed better, while
LR and MLP provided the lowest results.
Using Hybrid Analysis(static+dynamic). As the result of hy-
brid experiments, RF, DT and AdaBoost were the best models. They
got relatively high precision, recall, and F1 scores. As we can ob-
serve in Figure 4, RF achieved the highest F1 score for almost all
experiments. On the contrary, LR and MLP are not performing well.

4 RELATEDWORK
There have been several types of research regarding malware de-
tection based on static, dynamic, and both analyses.

Static analysis. In the static analysis, several features such as
opcode sequences, functional call-graph, portable executable (PE)
headers, byte sequences, are being extracted for malware detection
and classification. In the paper [8], two distinct categories of fea-
tures (strings and Portable Executable header information) from the
APT1 dataset [11] were extracted for six different machine learning
classifiers: Support Vector Machine, Logistic Regression, Random
Forest, XGBoost, Logistic Regression/XGBoost (Hybrid), and Logis-
tic Regression/Random Forest/Naïve Bayes (Hybrid). Additionally,
to operate with those features, twelve malware detectors were im-
plemented for each classifier, and the accuracy and execution time
of those detectors were analyzed and compared. However, the ex-
periments are conducted with a few PE header features that need
to be taken into account. Roseline et al. [17] proposed oblique ran-
dom forest ensemble learning that is considered a novel approach
for malware classification by handling the binary and multiclass
problem with a better geometric property. The effectiveness of the
approach was provided by conducting experiments to calculate
the accuracy and false positive rate on three malware classifica-
tion datasets: Antivirus, ClaMP (Classification of Malware with PE
headers), and Kaggle datasets.

Dynamic analysis. In the dynamic analysis, usually sandbox or
virtual machine is utilized to extract information (network activities,
system calls, and instruction sequences) about malware in that
environment for the performed activity. For this analysis, there are
different open-source or commercial sandboxes (cuckoo sandbox
[18], Joe sandbox [14], etc.). Usman et al. [1] proposed a novel
hybrid approach including dynamic malware analysis, machine
learning, cyber threat intelligence, and data forensics. The purpose
is to predict the IP reputation in its pre-acceptance stage and to
categorize its associated zero-day attacks using Decision Tree (DT)
on behavioral analysis. The effectiveness of their approach is shown
in two ways: comparison of machine learning methods based on F1,
precision, and recall scores; comparison of their entire reputation
system with other existing systems. Even though their approach
reduces the false alarm rate to some extent, it will not remove
completely. The paper [20] proposed a system using cuckoo-based
malware dynamic analysis to analyze malware automatically and
quickly, to classify malicious attributes efficiently. The system is
based on a semantic deep learning feature model to describe the
multi-layered aggregation relationship of program semantics via
a deep recursive neural network model and to build a malware
semantic aggregation model.

Hybrid analysis. The analysis is a combination of static analysis
and dynamic analysis to extract annotated disassembly listings and
generate additional information about malware. In the paper [12],
static properties and dynamic behavior analysis are used to classify
malware on a publicly available source with 987 malicious files and
613 benign samples included. Falcon Sandbox [19] and a virtualized
Windows 10 environment are leveraged to extract dynamic data on
which three machine learning classifiers (random forests, gradient
boosting, and neural networks) are analyzed. Their empirical exper-
iments demonstrated a high F1 score for every model up to 98.9%.
Huang et al. [15] introduced a malware detection technique that
is based on deep learning. In the paper, static visualization images
of static features and hybrid visualization images of both static
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and dynamic analysis to train two convolutional neural networks
(VGG16) are used. The effectiveness of the models on detecting
unknown malware is tested on the dataset collected from the free
malware package provided by virussign.com. As compared with
the static approach, their hybrid approach performs better.

5 CONCLUSION
In this paper, we explored the following questions: 1 Among the
three types of malware analysis approaches, i.e., static, dynamic,
or combination of both, what is the most efficient and effective
approach for packed malware analysis? 2 What are the features
that are important for machine learning progress? 3 What are the
machine learning techniques that provide consistent performance
on malware detection? In the presence of packers, we first observed
that static features are not very helpful for malware detection since
most packers obfuscate the software. Incorporating both static and
dynamic features helps improve the accuracy of packed malware
detection. Using hybrid analysis, security analysts can obtain the
benefits of both static and dynamic analysis, thus improving the
accuracy of unknown malware detection. Observing the feature
importance based on machine learning models, this research shows
that several dynamic features were found to be significant, includ-
ing behavioral and network analysis features. Based on our findings,
dynamic features contribute more to the proper prediction of mal-
ware than static features. Regarding machine learning methods,
our experimental results suggest that RF and DT have good per-
formance across multiple datasets. We also observed that many
packed malware samples incorporate an anti-debugging scheme
to circumvent dynamic analysis. Furthermore, in the process of
using CFG to extract static features, we can also observe that some
packers produce similar CFGs for packed malware samples through
CFG flattening, instruction substitutions, and code injections. Such
challenges motivate future research on studying effective methods
to study packed malware.
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