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ABSTRACT
Deep neural network models are susceptible to malicious manip-
ulations even in the black-box settings. Providing explanations
for DNN models offers a sense of security by human involvement,
which reveals whether the sample is benign or adversarial even
though previous studies achieved a high attack success rate. How-
ever, interpretable deep learning systems (IDLSes) are shown to be
susceptible to adversarial manipulations in white-box settings. At-
tacking IDLSes in black-box settings is challenging and remains an
open research domain. In this work, we propose a black-box version
of the white-box AdvEdge approach against IDLSes, which is query-
efficient and gradient-free without obtaining any knowledge of the
target DNN model and its coupled interpreter. Our approach takes
advantage of transfer-based and score-based techniques using the
effective microbial genetic algorithm (MGA). We achieve a high at-
tack success rate with a small number of queries and high similarity
in interpretations between adversarial and benign samples.
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1 INTRODUCTION
Generally, adversarial attacks are divided into two categories in
terms of the knowledge of the target deep neural network (DNN)
model gained by the attacker: white-box and black-box attacks. In
the white-box setting, the attacker has all the knowledge about
the target model; eventually, the attacker can achieve a high attack
success rate with high confidence. This type of attack is impractical
as the target model is inaccessible in most cases. However, in the
black-box setting, the attack is more realistic because only sample
input and its output are accessible to the attacker. Transfer-based
and score-based attacks are examples of this type of attack.

To improve the security of DNN models by explaining inner
workings of the models and how they come to a specific conclu-
sion, interpretation models are proposed and coupled with predic-
tion models to form interpretable deep learning systems (IDLSes).
IDLSes are believed to provide security means with human involve-
ment and inspection. However, recent studies have shown that the
IDLSes are also vulnerable to adversarial samples that can manipu-
late DNN models and their interpreters in a white-box scenario. To
date, little is known about the IDLSes susceptibility to adversarial
attacks in black-box settings.

In this paper, we propose a black-box version of AdvEdge [1]
to mislead the target DNN models and deceive their interpreta-
tion models. The proposed approach is query-efficient consisting
of transfer-based and score-based attacks. Additionally, the attack
achieves a high attack success rate on several classification and
interpretation models on ImageNet dataset. Our contributions are
as follows: 1 We propose the black-box version of AdvEdge at-
tack [1], which is query-efficient and gradient-free to generate
adversarial samples. 2 Experimental results demonstrate that the
proposed approach achieves a high attack success rate with a mini-
mum number of queries to attack several target DNN models and
their interpreters on ImageNet dataset.

2 METHODS
In the section, we explain our approach to achieve a successful
attack in a black-box setting. We adopt several techniques such as
AdvEdge attack, microbial genetic algorithm (MGA) [2].
Attack Formulation. The main purpose of the attack is to find
adversarial input 𝑥 that results in deceiving the target DNN 𝑓 and
its coupled interpreter 𝑔 in the black-box setting while preserving
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the amount of the perturbation in a predefined range 𝜖 . Specifically,
there are several conditions in generating an adversarial input 𝑥 :
(1) The adversarial input 𝑥 is misclassified by 𝑓 : 𝑓 (𝑥) ≠ 𝑦;
(2) 𝑥 triggers the coupled interpreter 𝑔 to produce an attribution

map �̂� similar to benign sample: 𝑔(𝑥 ; 𝑓 ) = �̂� s.t. �̂� ∼𝑚;
(3) 𝑥 and the benign 𝑥 samples are imperceptible.
The optimization framework can be described as follows:

min
𝑥

: Δ(𝑥, 𝑥) 𝑠 .𝑡 .

{
𝑓 (𝑥) ≠ 𝑦, 𝑠 .𝑡 . ∥𝑥 − 𝑥 ∥∞ ∈ {−𝜖, 𝜖}
𝑔(𝑥 ; 𝑓 ) = �̂�, 𝑠 .𝑡 . �̂� ∼𝑚 (1)

where the constraints confirms that (i) the adversarial input
is misclassified, as well as the distance between the adversarial
and benign input is within the predefined threshold and (ii) the
adversarial input triggers the interpreter𝑔 to generate an attribution
map that is similar to the benign one.

The Equation (1) can be reformulated for optimization as follows:

min𝑥 : ℓ𝑝𝑟𝑑 (𝑓 (𝑥), 𝑦) + 𝜆. ℓ𝑖𝑛𝑡 (𝑔(𝑥 ; 𝑓 ),𝑚) 𝑠 .𝑡 . Δ(𝑥, 𝑥) ≤ 𝜀

where ℓ𝑝𝑟𝑑 is the classification loss, ℓ𝑖𝑛𝑡 is the interpretation loss
to measure the difference between the adversarial map 𝑔(𝑥 ; 𝑓 ) and
the target map𝑚. To balance the two factors (ℓ𝑝𝑟𝑑 and ℓ𝑖𝑛𝑡 ), the
hyper-parameter 𝜆 is used. As a base to generate perturbation, we
adopt PGD [3] framework with modification:

𝑥 (𝑖+1) =
∏
B𝜀 (𝑥)

(
𝑥 (𝑖) − 𝑁𝑤 𝛼. 𝑠𝑖𝑔𝑛(∇𝑥 ℓ𝑎𝑑𝑣 (𝑥 (𝑖) ))

)
where 𝑁𝑤 term is used to optimize the location and magnitude of
the added perturbation. We note that this method is not directly
applied to the target DNN and its coupled interpreter as it is in a
black-box setting; however, it’s the adversary’s process to generate
an initial population for adversarial examples that can be used in
a black-box scenario. We employ MGA algorithm [2] in order to
optimize the method and craft adversarial samples. AdvEdge is only
used to feed the initial population for MGA.

MGA [2] is a type of Genetic algorithm that is based on gradient-
free optimization technique with the population of candidate so-
lutions. In the technique, set of samples (called population) are
iteratively evolved to generate optimal candidates with larger fit-
ness. Further details are explained in §2.1

2.1 Black-box AdvEdge
Our approach is based on transfer-based technique. Specifically, ad-
versarial samples generated using white-box models can be used to
attack unknown models. We utilize our white-box attack (AdvEdge)
to generate adversarial samples for the target black-box DNN 𝑓 .

The details of our attack is described in Algorithm 1. The attack
consists of genetic algorithm operators: initialization (line 1-2), se-
lection (line 4-6), crossover (line 7), mutation (line 8), and population
update (line 12).

Initialization. The population with optimal solution help to
technique converge fast. In our attack, adversarial samples gener-
ated by the white-box attack (AdvEdge) are used to initialize each
individuals of the population 𝛿𝑖 , 𝑖 = {1, 2, .., 𝑛}:

𝛿𝑖 =

{
−𝜖 𝑥𝑖 − 𝑥 < 0
𝜖 𝑥𝑖 − 𝑥 ≥ 0

where 𝑥𝑖 is the adversarial sample generated by AdvEdge.

Algorithm 1: Black-box AdvEdge
Data: Source DNN 𝑓 ′, interpreter 𝑔, input 𝑥 , original

category 𝑦, perturbation threshold 𝜖 , mutation rate
𝑚𝑟 , crossover rate 𝑐𝑟 , population size 𝑛, generation 𝐺 ,
target DNN 𝑓

Result: Adversarial sample 𝑥
1 𝑥 ′ = advedge_attack(𝑓 ′, 𝑔, 𝑥 , 𝑛)
2 𝑝𝑜𝑝 = init_population(𝑥 , 𝑥 ′, 𝜖)
3 for 𝑔← 1 to 𝐺 do
4 𝑝1, 𝑝2 = random_select(𝑝𝑜𝑝)
5 𝑣1, 𝑣2 = get_fitness(𝑓 , 𝑥 , 𝑝1, 𝑝2)
6 𝑙𝑜𝑠𝑒𝑟 ,𝑤𝑖𝑛𝑛𝑒𝑟 = sort_by_fitness(𝑝1, 𝑝2, 𝑣1, 𝑣2)
7 𝑐ℎ𝑖𝑙𝑑 = crossover(𝑐𝑟 , 𝑙𝑜𝑠𝑒𝑟 ,𝑤𝑖𝑛𝑛𝑒𝑟 )
8 𝑐ℎ𝑖𝑙𝑑 = mutation(𝑚𝑟 , 𝑐ℎ𝑖𝑙𝑑)
9 if 𝑓 (𝑐ℎ𝑖𝑙𝑑) ≠ 𝑦 then
10 return 𝑐ℎ𝑖𝑙𝑑
11 end
12 𝑝𝑜𝑝 = update_population(𝑝𝑜𝑝 , 𝑐ℎ𝑖𝑙𝑑)
13 end

Fitness function. It is used to assess the quality of the individu-
als of the population. It helps evolve towards the optimal population
with a large fitness score. In the attack, the loss function is applied
for the optimization objective in an untargeted setting.

Selection. The step helps a new generation to inherit genetic in-
formation by selecting samples. MGA randomly picks two samples
from the population. A winner (larger fitness score) and a loser are
obtained by fitness score comparison process.

Crossover. The step enables samples with high fitness scores
to submit their genetic information to the next generation. A new
sample is generated by transferring the genetic information of a
winner and a loser with the predefined crossover rate:

𝛿𝑐ℎ𝑖𝑙𝑑 = 𝛿𝑤𝑖𝑛𝑛𝑒𝑟 ∗ 𝑆𝑐𝑟 + 𝛿𝑙𝑜𝑠𝑒𝑟 ∗ (1 − 𝑆𝑐𝑟 )

where 𝑆𝑐𝑟 is a matrix with the values of 1 and 0, that are generated
based on the crossover rate.

Mutation. The process diversifies the population and solves lo-
cal optima issue. Mutation can be carried out using binary encoding
as follows:

𝛿𝑐ℎ𝑖𝑙𝑑 = −𝛿𝑐ℎ𝑖𝑙𝑑 ∗ 𝑆𝑚𝑟 + 𝛿𝑐ℎ𝑖𝑙𝑑 ∗ (1 − 𝑆𝑐𝑟 )

where 𝛿𝑐ℎ𝑖𝑙𝑑 is generated by crossover process, 𝑆𝑚𝑟 is a matrix with
the values of 1 and 0, that are generated based on the mutation rate.

Population update. For continuous evolvement, the population
should be updated by keeping the winners and replacing the losers
with new generation.

In general, adversarial samples are generated that can misclassify
the source DNN 𝑓 ′ (white-box) and its coupled interpreter 𝑔 to
seed the initial population, and a winner and a loser are randomly
chosen among the individuals of the population. Then a new child is
generated by conducting crossover and mutation processes on the
winner and the loser. Finally, losers are replaced with the generated
child. The process is repeated until the generated child is valid to
attack the target DNN 𝑓 (black-box).



Table 1: Attack success rate, average queries, median queries, and average noise of the proposed attack against different
classifiers and interpreters testing on 1,000 images. The attack is based on black-box setting.

Interpreter Source Model Target Model Success Rate Avg. Queries Median Queries Avg. Noise Rate

CAM [5]

ResNet

InceptionV3 0.95 438.24 5.00 0.21 ± 0.06
ResNet 1.00 5.00 5.00 0.20 ± 0.06

DenseNet 0.99 209.76 5.00 0.20 ± 0.06
VGG 1.00 179.80 5.00 0.20 ± 0.06

DenseNet

InceptionV3 0.95 363.31 5.00 0.21 ± 0.06
ResNet 1.00 188.53 5.00 0.20 ± 0.06

DenseNet 1.00 5.00 5.00 0.20 ± 0.06
VGG 1.00 158.33 5.00 0.20 ± 0.06

Grad [4]

ResNet

InceptionV3 0.95 479.93 5.00 0.21 ± 0.06
ResNet 1.00 8.66 5.00 0.20 ± 0.06

DenseNet 1.00 231.62 5.00 0.21 ± 0.06
VGG 1.00 180.04 5.00 0.20 ± 0.06

DenseNet

InceptionV3 0.95 372.12 5.00 0.21 ± 0.06
ResNet 1.00 189.08 5.00 0.20 ± 0.06

DenseNet 1.00 5.00 5.00 0.20 ± 0.06
VGG 1.00 161.25 5.00 0.20 ± 0.06

ResNet DenseNet
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Figure 1: IoU scores of interpretation maps generated by the proposed attack using Grad, CAM as interpreters and ResNet,
DenseNet as source models.

3 EXPERIMENTAL RESULTS
We evaluated the performance of the proposed attack against dif-
ferent state-of-the-art DNN models and interpretation models. We
randomly extracted 1,000 images (single sample per class) from
ImageNet dataset.
Attack Effectiveness against DNNs. For AdvEdge attack, we
utilized two DNN models as a source model to generate adver-
sarial samples for the initial population of the MGA: ResNet-50
and DenseNet-169. The results based on the DNN models are
provided in Table 1. Our attack achieved minimum 95% attack
success rate in deceiving different DNN models (i.e., InceptionV3,
ResNet, DenseNet, and VGG) with small number of queries (i.e.,
a median of five queries). Additionally, the noise rate is consid-
erably low (i.e., ≈ 0.2 ± 0.06), which means that the samples are
human-imperceptible.
Attack Effectiveness against Interpreters. Figure 1 display
the IoU scores between interpretation maps of adversarial and
benign samples. We used two interpretation models to present
the effectiveness: Grad [4] and CAM [5]. As displayed, adversarial
samples generated by our approach provide high-similarity in terms
of interpretation across all DNN models on both interpreters.

4 CONCLUSION
In this paper, we present a black-box version of AdvEdge attack,
which is query-efficient and gradient free to construct adversarial
samples with MGA algorithm. Experimental results show that the
attack utilizes less number of queries and achieves high attack
success rate against well-known DNN models and provides high-
similarity in interpretations with benign samples.
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