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ABSTRACT

The rapid pace of malware development and the widespread use of
code obfuscation, polymorphism, and morphing techniques pose a
considerable challenge to detecting and analyzing malware. Today,
it is difficult for antivirus applications to use traditional signature-
based detection methods to detect morphing malware. Thus, the
emergence of structure graph-based detection methods has become
a hope to solve this challenge. In this work, we propose a method
for detecting malware using graphs’ spectral heat and wave sig-
natures, which are efficient and size- and permutation-invariant.
We extracted 250 and 1,000 heat and wave representations, and we
trained and tested heat and wave representations on eight machine
learning classifiers. We used a dataset of 37,537 unpacked Windows
malware executables and extracted the control flow graph (CFG) of
each windows malware to obtain the spectral representations. Our
experimental results showed that by using heat and wave spectral
graph theory, the best malware analysis accuracy reached 95.9%.
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1 INTRODUCTION

In recent years, malware variants have shown a rapid develop-
ment trend, and malware designers are using new techniques such
as packing, deformation, polymorphism, and code obfuscation to
avoid anti-malware software detection. Therefore, it becomes easier
to create new malicious software using these novel technologies
and tools, while traditional detection methods, such as standard
signature-based detection, have been facing many challenges to
keep up-to-date with such an increasing trend. Innovative and novel
techniques that are based on pattern-mining and execution/memory
forensics have become a new hot topic.

Facilitating the analysis from both static and dynamic artifacts,
machine learning ML-based malware detection methods have be-
come an integral part of solutions in industrial and academic explo-
ration [1, 3, 6]. Since machine learning algorithms can explore in-
depth relationships between traits and the output, they fully exploit
information about malicious code to determine their behavior. Con-
sequently, machine learning-based malicious code detection tends
to exhibit high accuracy rates and discovers/automates the anal-
ysis of unknown malicious code. Furthermore, the breakthrough
progress of deep learning technology in computer vision, speech
recognition, natural language processing, and other domains has
provided a new perspective for malware detection research in re-
cent years [4]. Deep learning models can automatically learn feature
representations from the binary’s raw, unstructured bytes.

From another direction, many graph-based research methods
have emerged in recent years, contributing to code analysis. Graph
structures, such as abstract syntax trees, control-flow graphs (CFGs),
and data-flow graphs, can be extracted and studied to obtain mean-
ingful features. One challenge, however, is to maintain both expres-
siveness and efficiency when representing graphs, especially when
analyzing graphs with different sizes. NetLSD [7] offers efficient
and size- and permutation-invariant graph representations.

Since machine learning-based methods are highly dependent on
extracted features and classifiers, it is crucial to explore multiple al-
gorithms using artifacts generated by several techniques to achieve
high detection rates and low false-positive rates. In this work, we
propose a novel approach that utilizes spectral graph theory to
capture heat and wave features and apply them to eight classifiers
to improve malware detection accuracy.
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Figure 1: PCA analysis of benign and malware samples on heat and wave kernel representations

Contributions. The contributions of this work are as follows: @
We investigate the performance of eight machine learning-based
malware detection methods using a dataset of 37,537 Windows
executable samples. @ We use spectral representations of control
flow graphs to extract 250- and 1000-dimensional heat and wave
representations, apply them to machine learning classifiers, and
achieve a detection accuracy of 95.9%.

2 METHODS

This section describes the dataset, the executable extracted artifacts
and their spectral representations, the explored machine learning
methods, and the experimental settings and evaluation metrics.

Dataset. In this work, we use the malware dataset provided by
Aghakhani et al. [2]. The dataset consists of the dataset from the
EMBER, and a commercial vendor, and it contains an overall 37,537
samples, including 12,472 unpacked benign programs and 25,065
unpacked malicious executables.

Artifacts and Feature Representations. This work adopts a
static analysis approach to analyze executable binaries. Specifically,
we study the CFG for traits and behavior of maliciousness, which
is effective and accurate from malware analysis. We use NetLSD
to extract heat and wave representations of CFGs. To this end, we
adopted the following steps.

First of all, using radare2’s [5] Python API - r2pipe, we extracted
the CFGs for all Windows executable binaries. Then, we applied
CFGs to NetLSD to generate 250- and 1,000-dimensional heat and
wave graph spectral representation. NetLSD generates compact
graph signatures based on the Laplacian’s heat or wave kernel,
which inherit the Laplacian spectrum’s formal features. The heat
kernel is a family of low-pass filters that captures low-frequency
information in the graph at every scale. Wave kernel maintains
symmetries and structures on the spectrum via band-pass filters.

In Figure 1, we use Principal Component Analysis (PCA) to visu-
alize the 250- and 1000-dimensional heat and wave representations.
PCA is used for dimensionality reduction, where each data point is
projected onto only the first few principal components to gener-
ate lower-dimensional data while preserving as much variation as
possible. As a result, coll and col2 represent the features after the
dimension reduction, label 0 is benign, and label 1 is malware. As
you can see in Figure 1, the majority of samples are malware. PCA
analysis shows that benign samples share a common similarity as
they are located near each other.

Machine Learning Methods. We applied several machine learn-
ing models for windows malware detection. The following eight
machine learning algorithms are applied: @ Support Vector Ma-
chine (SVM), @ Decision Tree (DT), @ Logistic Regression (LR),
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Figure 2: Results of performance metrics on eight different machine learning classifiers

@ Random Forest (RF), @ K-Nearest Neighbors (KNN), @ artifi-
cial neural network (ANN), @ Adaptive Boosting (AdaBoost) and
OXGBoost(XGB) in our experiments.

Experiment Settings. To handle class imbalance, we applied Syn-
thetic Minority Oversampling Technique (SMOTE) to oversample
the minority class. Then, we randomly split the dataset into training
and testing datasets (70% and 30% respectively) before training the
ML models. We repeated the experiment ten times and reported
the results using accuracy, precision, recall, and F1 score.

3 PRELIMINARY RESULTS

In the experiments, we apply the 250- and 1000-dimensional heat
and wave features to build classifiers and obtain the final accuracy,
precision, recall, and F1 score. Each experiment is repeated ten
times, with the dataset being randomly split each time to allow for
impartial model evaluation, and then we report the average results
as shown in Figure 2. Figure 2 (a) and (c) shows that the results of
the 250 heat features experiment are similar to those of the 1000
heat features experiment. RF, DT, and XGB obtained high accuracy,
precision, recall, and F1 scores, and almost all evaluation scores
were in the range of 93% to 95%. On the contrary, the performance of
SVC and LR is not as good, although their precision scores are high,
their accuracy, recall, and F1 scores are very low. Figure 2 (b) and
(d), shows that the wave features have better performance and the
evaluation metrics of all eight classifiers have improved around 1%
to 6% (compared to results obtained from heat representations). RF,
DT, and XGB are still the best among the eight classifiers. Although
the difference is insignificant, the 1000 wave representations have
0.1% to 0.2% improvement over the 250 wave representations, indi-
cating huge possible efficiency gains, working with large datasets
or inference throughput. We summarize the following experimental
results: @ RF, DT, and XGB are the three best performing classifiers
in all experiments. @ Wave representations perform better than

heat representations. @ Using higher dimensional features (1000
vs. 250) does not significantly help machine learning classifiers.

4 CONCLUSION

In this paper, we propose a novel idea to detect windows malware
by extracting heat and wave features through the NetLSD method
using spectral graph theory. From the experimental results, we can
conclude that heat and wave features are helpful for malware detec-
tion. Wave spectral representations have better performance than
heat representations when using the same dimensionality. We plan
to investigate the changes in spectral representations for malware
variants and how perturbations impact these representations.
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