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ABSTRACT
Deep Learning is rapidly evolving to the point that it can be used
in crucial safety and security applications, including self-driving
vehicles, surveillance, drones, and robots. However, these deep
learning models are vulnerable to attacks based on adversarial sam-
ples that are undetectable to the human eye but cause the model
to misbehave. There is an increasing demand for comprehensive
and in-depth analysis of behaviors of various attacks and the possi-
ble defenses against common deep learning models under several
adversarial scenarios. In this study, we conducted four separate in-
vestigations. First, we examine the relationship between themodel’s
complexity and its robustness against the studied attacks. Second,
the connection between the performance and diversity of models
is examined. Third, the first and second experiments were tested
across different datasets to explore the impact of the dataset on the
performance of the model. Four, throughout the defense strategies,
the model behavior is extensively investigated. The code, trained
models, and detailed settings and results are available at: https:
//github.com/ InfoLab-SKKU/ML-Adversarial-Attacks-Analysis.
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1 INTRODUCTION
Deep Learning has grown into a powerful tool that can be used to
address a wide range of complicated learning tasks that were previ-
ously unattainable to tackle using conventional machine learning
approaches. In recent years, Deep Learning (DL) has achieved signif-
icant progress in the traditional disciplines of image classification,
voice recognition, and language translation, thanks to the emer-
gence of Deep Neural Network (DNN) models and the availability
of high-performance resources to train complicated models [2, 3, 5].
As DNN has evolved from experimental settings to real-world appli-
cations, security and privacy concerns have become a major issue
of deploying the DL models. After the findings of Szegedy et al.
[6], several seminal works on the practicality of adversarial attacks
on DL have appeared in the research community [1, 3, 7]. Existing
adversarial attacks can be categorized into three categories: white-
box, gray-box, and black-box based on the adversaries’ knowledge
assumptions about the target model [4].

This study concentrated on evaluating a few selected attack
methods from these attacks categories (Figure 1), such as Fast Gra-
dient Sign Method (FGSM), Projected Gradient Descent (PGD), and
Carlini and Wagner (C&W) white-box attacks. Simple Black Box
Attack (SimBA), hopskipjump, and boundary are selected from the
black-box attacks. These attacks were comprehensively evaluated
within the frameworks of various threat models. Also, the study
evaluated the effectiveness of several defensive strategies for ad-
versarial attacks, such as the preprocessor, trainer, and detector. In
this study, we applied three common preprocessor defenses: Bit
squeezing, Median smoothing, JPEG filter.
Contributions. In this work, we investigate various characteris-
tics of the attacks and defenses on the well-known deep learning
models, including VGG, ResNet, DenseNet families with a differ-
ent number of layers using the various datasets such as ImageNet,
CIFAR-10, and CIFAR-100. Furthermore, we examined the attacks
and defenses approaches on diverse models like Xeption, Incep-
tionV3,MobileNetV2, and GoogLeNet.

In this work, we raise and answer the following research ques-
tions. 1 Is the complexity of the models a factor in the attack’s
success/failure rate? To answer this question, we investigated the
model robustness by increasing the number of layers in three types
of DL models (ResNet, VGG, DenseNet). 2 When faced with an
adversarial example, is there a relationship between model diversity
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Figure 1: A taxonomy of adversarial attacks. The stars mark the attacks considered in this work.

and robustness? To answer this question, the attacks were tested on
seven diverse DL models. 3 How do attacks behave across different
datasets? To answer this question, we conducted experiments on
three well-known datasets. 4 How do attacks behave when there
are defenders? To answer this question, three preprocessing defense
strategies were examined against the attacks.
Organization. The following outlines this paper: In Section 2, we
discuss about the dataset and studied models, Section 3 highlights
our observations and in Section 4 we conclude our study.

2 DATASET AND MODELS
2.1 Dataset
We employed three common datasets for all experiments: ImageNet,
CIFAR-10, and CIFAR-100. The ImageNet dataset contains 14million
samples of images with a size of 224x224 pixels for 1000 classes.
The CIFAR-10 dataset contains 60,000 samples with a size of 32x32
pixels, distributed over 10 classes, while the CIFAR-100 dataset has
the same number of samples distributed over 100 classes.

2.2 Models
For our experiment 1, we used 12 models for each dataset from
three families (ResNet, VGG, DenseNet) with a different number
of layers. For experiment 2, we utilized seven diverse models for
each dataset, including GoogLeNet, InceptionV3, Xception, and
MobileNet V2. For the ImageNet dataset, we used pre-trained
models on the PyTorch framework. For CIFAR-10 and CIFAR-100,
we trained models on our servers.

3 PRELIMINARY EXPERIMENTAL RESULTS
In our experiments, 1000 test images were examined for each white-
box attack. For black-box attacks, 200 test images were selected due
to the slow performance of black-box attacks.

3.1 EXP 1: Model Complexity and Robustness
In Experiment 1, we tested the hypothesis that the attack success
rate is affected by the complexity of the model on ImageNet (Figure
2). In Figure 2 (a), using the PGD white-box attack, it is shown that
the attack failure increases as the model layers increase, which indi-
cates that the complexmodel is more robust compared with the shal-
low models. For example, the ResNet152 model and DenseNet201
are more difficult to deceive than other models.
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Figure 2: (a) Shows how as the number of layers rises, the
attack successful attempts decreases. (b) Shows that as the
number of layers grows, the amount of noise perturbed as-
cents. The amount of noise is described by the pixel wise
difference (adversarial and benign sample).

In Figure 2 (b), using the HopSkipJump black-box attack, we
observed that as the number of layers of the model increases, the
complexity of the model increases, and the attacks require more
noise to succeed. For example, succeeding against DenseNet201
requires the largest amount of noise.

3.2 EXP 2: Model Diversity and Robustness
In Experiment 2, we tested all selected white-box attacks, i.e., FGSM,
PGD, and C&W on diverse models (i.e., structure and parameters
included), including Resnet152, VGG19, DenseNet161, Xeption, In-
ceptionV3, MobileNetV2, and GoogLeNet. From the experimental
results, it became obvious that the number of parameters on models
does not play an important role in model robustness (Figure 3).
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Figure 3: It represents a wide range of DNNs for determining
the relationship between the number of large parameters
and the model’s robustness against white-box attacks.

a) PGD (white-box attack)

b) SimBA (black-box attack) 
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Figure 4: Attack successful attempts of white-box and black-
box attacks on different dataset.

3.3 EXP 3: Attacks across Different Datasets
In Experiment 3, we tested experiments 1 and 2 using different
datasets (e.g., CIFAR-10 and CIFAR-100). In white-box attacks, due
to less number of classes on CIFAR-10 and CIFAR-100, the attack
success rate dropped significantly in all white-box attacks except
for C&W attack (Figure 4 (a) showing the PGD attack successful
attempts). However, in the black-box setting (e.g., SimBA), we ob-
served that the number of classes has a minor influence on attack
success rate (Figure 4 (b)). However, the size of the input image has
a significant impact on the success rate of black-box attacks.

3.4 EXP 4: Defenses against Adversarial Attacks
In experiment 4, three prepossessing defense strategies were inves-
tigated such the bit squeezing, median smoothing, and JPEG filter.
The defense techniques modify the input image but do not have any
impact on the model. We used the defenses with weak parameters
to maintain the benign confidence. In white-box attacks like FGSM
and PGD attacks, the applied defenses could not drop the attack
success rate much due to high misclassification confidence and
the amount of perturbed noise. However, for the C&W attack, the
attack success rate decreased significantly after applying defenses
with even weak parameters. The reason for this drop is that the
C&W attack deceives models with a small amount of noise. There
is a trade-off between the noise amount and attack success rate.

In the case of a black-box attack, experiment 4 showed that it
is easy to defend the models with weak parameters due to the low
misclassification confidence of the attacks.

4 CONCLUSION
This work presents the preliminary results of a large-scale study on
the impact of various adversarial attacks and defenses on different
models across different datasets. Our experiments proved many
assumptions about the behaviors of attacks and defenses. Further-
more, we found and analyzed several weaknesses of the attacks. So
far in the literature, there have been many review papers about the
behaviors of adversarial attacks and defenses. However, most of
them are theoretical. In our work, we showed all those behaviors
with comprehensive experiments. Our observations proved and
rejected many assumptions. A promising future work will include
greybox attacks, other types of defenses. In addition, we will com-
pare the robustness of different architectures other than CNNs like
Vision Transformers.
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