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Successful software authorship de-anonymization has both software forensics applications and privacy im-
plications. However, the process requires an efficient extraction of authorship attributes. The extraction of
such attributes is very challenging, due to various software code formats from executable binaries with dif-
ferent toolchain provenance to source code with different programming languages. Moreover, the quality
of attributes is bounded by the availability of software samples to a certain number of samples per author
and a specific size for software samples. To this end, this work proposes a deep Learning-based approach
for software authorship attribution, that facilitates large-scale, format-independent, language-oblivious, and
obfuscation-resilient software authorship identification. This proposed approach incorporates the process of
learning deep authorship attribution using a recurrent neural network, and ensemble random forest clas-
sifier for scalability to de-anonymize programmers. Comprehensive experiments are conducted to evaluate
the proposed approach over the entire Google Code Jam (GCJ) dataset across all years (from 2008 to 2016)
and over real-world code samples from 1,987 public repositories on GitHub. The results of our work show
high accuracy despite requiring a smaller number of samples per author. Experimenting with source-code,
our approach allows us to identify 8,903 GCJ authors, the largest-scale dataset used by far, with an accuracy
of 92.3%. Using the real-world dataset, we achieved an identification accuracy of 94.38% for 745 C program-
mers on GitHub. Moreover, the proposed approach is resilient to language-specifics, and thus it can identify
authors of four programming languages (e.g., C, C++, Java, and Python), and authors writing in mixed lan-
guages (e.g., Java/C++, Python/C++). Finally, our system is resistant to sophisticated obfuscation (e.g., using
C Tigress) with an accuracy of 93.42% for a set of 120 authors. Experimenting with executable binaries, our ap-
proach achieves 95.74% for identifying 1,500 programmers of software binaries. Similar results were obtained
when software binaries are generated with different compilation options, optimization levels, and removing
of symbol information. Moreover, our approach achieves 93.86% for identifying 1,500 programmers of obfus-
cated binaries using all features adopted in Obfuscator-LLVM tool.
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1 INTRODUCTION

Authorship identification of natural language text is a well-known problem that has been studied
extensively in the literature [46, 47, 50, 65]. However, far fewer works are dedicated to authorship
identification in structured code, such as the source code of computer programs [27]. Software
authorship identification is the process of software developer identification by associating a pro-
grammer to a given code based on the programmer’s distinctive stylometric features. A code of
software can be presented with the original source code or the executable binaries, which can be
decompiled to generate pseudo-code as higher level construction of the binary instructions [29, 60].
The problem is, however, difficult and different from authorship identification of natural language
text. This fundamental difficulty is due to the inherent inflexibility of the presented code expres-
sions established either by the syntax rules of compilers or the reverse engineering of binaries.

Software authorship identification relies on extracting features from software code that a pro-
grammer produces based on the programmer’s preferences in structuring and developing software
pieces. Given these features, the main objective of software authorship identification is to correctly
assign programmers to software codes based on the extracted features. Being able to identify soft-
ware authors is both a risk and a desirable feature. On the one hand, software authorship identifica-
tion poses a privacy risk for programmers who wish to remain anonymous, including contributors
to open source projects, activists, and programmers who conduct programming activities on the
side. Thus, in turn, this makes software authors identification a de-anonymization problem. On
the other hand, software authorship identification is useful for software forensics and security
analysts, especially for identifying malicious code (such as malware) programmers; e.g., where
such programmers could leave source code in a compromised system for compilation, or where
features of programmers could be extracted from decompiled binaries. Moreover, authorship iden-
tification of software is helpful with plagiarism detection [24], authorship disputes [69], copyright
infringement [39], and software integrity investigations [55].

The problem of software author identification is challenging and faces several obstacles that
prevent the development of practical identification mechanisms. In the case of source code author-
ship identification, first, programming “style” of programmers continuously evolves as a result of
their education, their experience, their use of certain software engineering paradigms, and their
work environment [26]. Second, the programming style of programmers varies from language to
another due to external constraints placed by managers, tools, or even languages. Third, while it is
sometimes possible to obtain the source code of programs, sometimes it is not, and the source code
is occasionally obfuscated by automatic tools, preventing their recognition. In the case of binary
code authorship identification, first, the toolchain provenance used to produce the binaries must
be identified, since numerous resultant binaries for the same program can be generated by using
different compilation processes. Second, most software binaries, especially malicious programs,
are obfuscated making it difficult to be analyzed for authorship.

To address those challenges, recent attention to software authorship identification has revived
more than two-decade old work [51, 63] by proposing several techniques [27, 28]. However, there
are several limitations to the prior work. Namely, (i) most software features used in the literature
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for author identification are not directly applicable to another language; features extracted in Java
cannot be directly used as features in C or in Python for identifying the same author; (ii) techniques
used for extracting software authorship features do not scale well for a large set of authors (see
Section 2); and (iii) the extracted features are usually large and not all of them are relevant to the
identification task, necessitating an additional procedure for feature evaluation and selection [35].

To address the aforementioned issues, this work presents a technique that uses deep learning as
a method for learning data representation. Our work attempts to answer the following questions.
(i) How can deep learning techniques contribute to the identification of software authors? (ii) To
what extent does an authorship identification approach based on deep learning scale in terms of
the number of authors given a limited number of program samples per author? (iii) Can deep learn-
ing help identify authorship attributes that go beyond language specifics in an efficient way and
without requiring prior knowledge of the language? (iv) Will deep authorship representation still
be robust when the program is obfuscated? (v) Can deep authorship representation help identify
authors of executable binaries? and (vi) Will deep authorship representation still be robust when
different toolchain provenance is used to generate program binaries?

Summary of Contributions. We summarize the main contributions of this work in multiple
directions as follows: First, we design a feature learning and extraction method using a deep learn-
ing architecture with a recurrent neural network (RNN). The extraction process is fed by a
complete or an incomplete program code to generate high quality and distinctive code authorship
attributes. The prior work considers preprocessing data transformations, which resulted in high-
quality features for effective code authorship identification. However, this feature engineering
process is usually dependent on human prior knowledge of the programming language addressed
in a given task. Our approach utilizes a learning process of large-scale software authorship attri-
bution based on a deep learning architecture to efficiently generate high-quality features. Also,
as input to the deep learning network, we use the Term Frequency-Inverse Document Fre-

quency (TF-IDF) that is already a well-known tool for textual data analysis [23, 40, 47]. Thus, our
approach does not require prior knowledge of any specific programming language or high-level
translations of program binaries, thus it is more resilient to language specifics when the source
code is available and more robust to compilation settings when the target code is in binary format.
When conducting experiments on large-scale source code dataset, we found that top features are
mostly for keywords of the used programming language, which implies that a programmer cannot
easily avoid being identified by simply changing the variable names but by dramatically changing
his programming style. With this feature learning and extraction method, we were able to achieve
comparable accuracy to (and sometimes better than) the state of the art. For example, compared to
100% accuracy in detecting authorship over a small sample (35 C++ programmers) using features
extracted from the abstract syntax tree of the source code [28], we provide a similar accuracy over
a larger dataset (150 C++ programmers) and close to that accuracy (99%) for other programming
languages using our scalable deep learning-based approach (a comparison is in Table 1).

Second, we experimentally conduct a large-scale code authorship identification and demonstrate
that our technique can handle a large number of programmers (8,903 programmers) while main-
taining a high accuracy (92.3%). To make our authorship identifier work at a large scale, Random

Forest Classifier (RFC) is utilized as a classifier of a TF-IDF-based deep representation extracted
by RNN. This approach allows us to utilize both deep learning’s good feature extraction capability
and RFC’s large-scale classification capability. Compared to our work, the largest-scale experiment
in the literature used 1,600 programmers and achieved a comparable accuracy of 92.83% using nine
files per author as shown in Table 9 of Reference [28]. While our dataset includes more than 5.5
times the number of the programmers in the prior work, our technique required less data per
author (only seven files) for the same level of accuracy at a lower computational overhead. Our
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experiments are complemented with various analyses. We explore the effect of limited code sam-
ples per author and conduct experiments with nine, seven, and five code samples per author. We
investigate the temporal effect of programming style on our approach to show its robustness.

Third, we show that our approach is oblivious to language specifics. Applied to a dataset of
authors writing in multiple languages, our deep learning architecture is able to extract high quality
and distinctive features that enable code authorship identification even when the model is trained
by mixed languages. We based our assessment on an analysis over four individual programming
languages (namely, C++, C, Java, and Python) and three combinations of two languages (namely,
C++/C, C++/Java, and C++/Python).

Fourth, we investigate the applicability of our approach to identify programmers from executa-
bles. Several previous works have shown that authorship attribution can be extracted from exe-
cutable binaries, and identifying programmers of software binaries is possible [29, 56, 61]. In this
work, we examine our approach on capturing authorship traits from high-level translations of bi-
naries generated by simple straightforward reverse engineering process. The proposed approach
achieves an accuracy of 98.4% and 95.74% for identifying 250 and 1,500 programmers of software
binaries, respectively. We extend our experiments and analysis to examine the effects of different
compilation settings such as levels of optimization and removal of symbol information in stripped
binaries.

Fifth, we investigate the effect of obfuscation methods on the authorship identification and show
that our approach is resilient to both simple off-the-shelf obfuscators, such as Stunnix [1], and
more sophisticated obfuscators, such as Tigress [6] under the assumption that the obfuscators are
available to the analyzer. We achieve an accuracy of 99% for 120 authors with nine obfuscated files,
which is better than the previously achieved accuracy in Reference [28].

Finally, we examine our approach on real-world datasets and achieve 95.21% and 94.38% of ac-
curacy for datasets of 142 C++ programmers and 745 C programmers, respectively.

Organization. The remainder of the article is structured as follows. We review the related work
in Section 2. We introduce the theoretical background required for understanding our work in
Section 3. In Section 4 we present our deep learning-based approach for software authorship iden-
tification. We proceed with a detailed overview of the experimental results of our approach using
the software source code in Section 5 and using the binary code in Section 6. Section 7 shows
the experimental results of authorship attribution of obfuscated software. In Section 8, we address
authorship identification of software in real-world scenarios. Finally, the limitations of this work
are outlined in Section 9, followed by concluding remarks in Section 10.

2 RELATED WORK

Broadly related to our work is the attribution of unstructured text. Authorship attribution for
unstructured textual documents is a well-explored area, where earlier attempts to match anony-
mously written documents with their authors were motivated by the interest of settling the author-
ship of disputed works, such as The Federalist Papers. Since the early 2000s, studies of authorship
attribution have focused on determining indicative features of authorship using the linguistic infor-
mation (e.g., length and frequency of words or pairs of words, vocabulary usage, sentence structure,
etc.). Recent works have shown high accuracy in identifying authors of various datasets such as
chat messages, e-mails, blogs, and micro-blogs entries. Abbasi and Chen [8] proposed writeprints,
a technique that demonstrated a remarkable result in capturing authorship stylometry in diverse
corpora including eBay comments and chat as well as e-mail messages of up to a hundred unique
authors. Uzuner and Katz [68] provided a comparative study of different stylometry methods used
for authorship attribution and identification. Afroz et al. [12] investigated the possibility of iden-
tifying cybercriminals by analyzing their textual entries in underground forums, even when they
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Table 1. Comparison between Our Work Using Deep Learning for Authorship Identification and Various

Related Works from the Literature over the Used Classification Techniques, Used Languages, and

Approaches

Authorship identification based on source code

Reference # Authors Languages Accuracy (%) Classification Technique
Pellin [58] 2 Java 88.47% Machine learning (SVM with tree kernel)
MacDonell et al. [54] 7 C++ 81.10% Machine learning (FFNN). Statistical analysis (MDA)
MacDonell et al. [54] 7 C++ 88.00% Machine learning (case-based reasoning).
Frantzeskou et al. [40] 8 C++ 100.00% Rank similarity measurements (KNN)
Burrows et al. [25] 10 C 76.78% Information retrieval using mean reciprocal ranking
Elenbogen & Seliya [37] 12 C++ 74.70% Statistical analysis (decision tree model)
Lange & Mancoridis [52] 20 Java 55.00% Rank similarity measurements (nearest neighbor)
Krsul & Spafford [51] 29 C 73.00% Statistical analysis (discriminant analysis)
Frantzeskou et al. [40] 30 C++ 96.90% Rank similarity measurements (KNN)
Ding & Samadzadeh [35] 46 Java 62.70% Statistical analysis (canonical discriminant analysis)
Burrows et al. [27] 100 C, C++ 79.90% Machine learning (neural network classifier)
Burrows et al. [27] 100 C, C++ 80.37% Machine learning (SVM)
Caliskan-Islam et al. [28] 229 Python 53.91% Machine learning (random forest)
Caliskan-Islam et al. [28] 1,600 C++ 92.83% Machine learning (random forest)
Abuhamad et al. [11] 1,600 C++ 96.2% Machine learning (CNN)
Abuhamad et al. [11] 1,500 Python 94.6% Machine learning (CNN)
Abuhamad et al. [11] 1,000 Java 95.8% Machine learning (CNN)
This work 566 C 94.80% Machine learning (RNN with random forest)
This work 1,952 Java 97.24% Machine learning (RNN with random forest)
This work 3,458 Python 96.20% Machine learning (RNN with random forest)
This work 8,903 C++ 92.30% Machine learning (RNN with random forest)

Authorship identification based on binary code

Reference # Authors Languages Accuracy (%) Classification Technique
Rosenblum et al. [61] 10 Binary 81% Machine learning (SVM)
Meng et al. [56] 284 Binary 65% Machine learning (random forest)
Caliskan-Islam et al. [29] 600 Binary 83% Machine learning (random forest)
This work 1,500 Binary 95.74% Machine learning (RNN with random forest)

MDA, Multiple Discriminant Analysis; FFNN, Feed Forward Neural Network; RNN, Recurrent Neural Network; CNN,

Convolutional Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machines. Results are excerpted from

references.

use multiple identities. Stolerman et al. [66] considered using classifiers’ confidence to address the
open-world authorship identification problem. Another body of work has investigated authorship
attribution under adversarial settings either for the purpose of hiding the identity or imperson-
ating (i.e., mimicking) other identities. Brennan et al. [22] studied three adversarial settings to
circumvent authorship identification: obfuscation, imitation, and translation.

2.1 Authorship Attribution of Source Code

Addressing authorship attribution for structured data, such as source code, presents a challenge
and another interesting body of work in the field of authorship attribution. A summary of the
related work is in Table 1, with a comparison across four variables: the number of authors, the
programming language, the accuracy, and the used technique. The method commonly followed
in the literature for code authorship identification research has two main steps: feature extraction
and classification. In the first step, software metrics or features representing an author’s distinc-
tive attributions are processed and extracted. In the second step, those features are fed into an
algorithm to build models that are capable of discriminating among several authors. While the
second step is a straightforward data-driven method, the first step leads to major challenges and
has become the focus of several research works for more than two decades. Designing authorship
attributions that reflect programmersâ.. stylistic characteristics has been investigated by multiple
works, since the early work of Krsul et al. [51]. Existing code authorship attribution methods
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include extracting features from different levels of programs, depending on the targeted code for
analysis. These features can be as simple as byte-level or term-level features [40], or as complex as
control and data flow graphs [13, 56, 61] or even abstract syntax tree features [28, 58]. The quality
of extracted authorship attributes significantly affects the identification accuracy and the extent to
which the proposed method can scale in terms of the number of authors [9, 10]. Krsul and Spafford
[51] were the first to introduce 60 authorship stylistic characteristics categorized into three classes:
programming layout characteristics (e.g., the use of white spaces and brackets), programming
style characteristics (e.g., average variable length and variable names), and programming structure
characteristics (e.g., the use of data structures and number of code lines per function). MacDonell
et al. [54] adopted only 26 authorship stylistic characteristics extracted using custom-built soft-
ware IDENTIFIED. Some of these characteristics were extracted by calculating the occurrence of
features per line of code. Frantzeskou et al. [40] introduced Source Code Author Profiles using byte-
level n-grams features for authorship attribution. Their work was inspired by the success of using
n-gram in text authorship identification. Moreover, using n-gram have made the approach
language-independent, an issue that limited preceding works. Lange and Mancoridis [52] were
the first to consider a combination of text-based features and software-based features for code
authorship identification. Their work used feature histogram distributions for finding the best com-
bination of features that achieve the best identification accuracy. Elenbogen and Seliya [37] consid-
ered six features to establish programmersâ.. profiles based on personal experience and heuristic
knowledge: the number of comments, lines of code, variablesâ.. count and name length, the use
of for-loop, and program compression size. Burrows et al. [25] used a combination of n-gram and
stylistic characteristics of programmers for authorship identification. Most recently, Caliskan-
Islam et al. [28] showed the best results over a large-scale dataset (1,600 programmers) by far,
taking advantage of abstract syntax tree node bigrams. Their approach included an extensive
feature extraction process for programmer code stylometry involving code parsing and abstract
syntax tree extraction, resulting in large and sparse feature representations, and dictating a further
feature evaluation and selection process. After authorship attributions have been introduced,
most of the previous works on code authorship identification have adopted either a statistical
analysis approach, a machine learning-based classification, or a ranking approach that is based on
similarity measurements to classify code samples [27]: Statistical analysis methods are considered
for limiting the feature space to discover highly-indicative features of authorship. Krsul and
Spafford [51], MacDonell et al. [54], and Ding and Samadzadeh [35] used discriminant analysis
for identifying authors. As for machine learning, various approaches are used for source code
authorship identification: case-based reasoning [54], neural networks [27, 54], decision trees [37],
support vector machine [27, 58], and random forest [28]. As a general approach of similarity
measurement, a ranking approach based on similarity measurements can be used to compute the
distance between a test instance and candidate instances in the feature space. Using a k-nearest
neighbor approach is one way to assign instances to authors with similar instances. Lange and
Mancoridis [52], Frantzeskou et al. [40], and Burrows et al. [25] implemented different ranking
methods based on similarity measurements.

2.2 Authorship Attribution of Binary Code

Code authorship identification could also be done at the binary level, which is addressed separately
in the literature. Binary-level techniques [13, 29, 56, 61] are advocated as a viable tool for software
attribution where the source code is not available [56].

Rosenblum et al. [61] explored authorship attributions of program binary code in two tasks,
authorship identification, and authorship clustering. The authors extracted a large number of au-
thorship stylistic features from software binary code to enable attributing programmers efficiently
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to identify them or categorize them based on extracted features. These features include n-grams,
idioms, graphlets, supergraphlets, call graphlets, and library calls. Using these features, Rosenblum
et al. [61] achieved 81% accuracy for identifying ten programmers and 51% for identifying almost
200 programmers. Alrabaee et al. [13] proposed a binary authorship identification method called
OBA2, which extracts syntax-based and semantic-based features related to authorship.

Caliskan-Islam et al. [29] have introduced a different approach to extract authorship attribution
from binary code by using simple straightforward reverse engineering process to obtain higher
translations of program binary code. Using code stylometry features extracted from decompiled
pseudo-code, their method achieved an accuracy of 96% for identifying 100 programmers and an
accuracy of 83% for 600 programmers. Using the approach introduced by Caliskan-Islam et al. [29],
the authors provided evidence that authorship stylometry features survive the compilation process
and it is possible to identify programmers of executable binaries even if the binary codes were
generated by compilation process included optimization and/or stripping of symbol information.

Meng et al. [56] explored the possibility of identifying multiple authors of binary code. The
authors introduced a fine-grained approach to identify authors on the basic-block level. Meng
et al. [56] evaluated their approach using real-world projects to achieve an accuracy of 65% for
identifying 284 programmers as the first guess and accuracy of 82% when the correct author is
from the top 10 suspects.

While very useful, binary-level techniques work under the assumption that a toolchain prove-
nance is used to generate the binary code, including the operating system, compiler family, ver-
sion, optimization level and source language are known to the analyzer. Source-level techniques,
however, are more flexible and equally useful, especially in addressing incomplete pieces of code
(which cannot be compiled). Even when operating on binaries, codelike artifacts are what is being
actually analyzed. For example, Caliskan-Islam et al. [29] showed that a simple reverse engineer-
ing process of binary files can generate a pseudo-code that can be treated as a source code for code
authorship identification. In our experiments on identifying the programmers of executable bina-
ries, we adopt the approach of Reference [29] by analyzing the decompiled code for authorship
using deep learning.

3 BACKGROUND AND MOTIVATION

In this work, the analysis for software authorship attribution is done on source code or codelike
artifacts extracted from executable binaries using a reverse engineering process. Authorship attri-
butions are extracted from code files using a two-step process, i.e., TF-IDF as initial representation
and then deep authorship representation using deep learning method. The extracted authorship
attributions enable the identification of programmers using ensemble classifier. This section high-
lights the motivation and the underlying concepts of different used methods in our proposed sys-
tem for software authorship attribution and identification.

3.1 Term Frequency-Inverse Document Frequency

TF-IDF is a well-known tool for text data mining. The basic idea of TF-IDF is to evaluate the
importance of terms in a document in a corpus, where the importance of a term is proportional
to the frequency of the term in a document. However, it is highly likely to be emphasized by
documents that have a very common term over a corpus. Therefore, how specific a given term is
over a corpus should be considered. It can be quantified as an inverse function of the number of
documents in which it appears. In building the data preprocessing component of our technique, a
term t in a document d of a corpus D is assigned a weight using the formula TF-IDF(t ,d,D) =
TF(t ,d ) × IDF(t ,D), where TF(t ,d ) is the term frequency (TF) of t in d and Inverse Document
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Fig. 1. The TF-IDF values of top-30 terms for five programmers. The value of a term is different among
authors who use the same term. The terms are as follows: (“ans,” “begin,” “begin end,” “bool,” “break,” “char,”
“cin,” “cin int,” “cmath,” “cmath include,” “const,” “const int,” “continue,” “cout,” “cout case,” “cstdlib,” “cstdlib
include,” “cstring,” “cstring include,” “define,” “define pb,” “double,” “end,” “endl,” “false,” “freopen,” “include
cmath,” “include cstdlib,” “include cstring,” and “include map’).

Frequency (IDF) (t ,D) = log( |D|/DF(t ,D)) + 1, where |D| is the number of documents in D
and DF(t ,D) is the number of documents containing the term t .

Using TF-IDF as initial representation for code files is motivated by its wide-range applications
on processing textual data. Terms and n-grams features (frequency) are commonly used in infor-
mation retrieval and have been adopted for code authorship identification [23, 40, 47]. TF-IDF
features describe an author’s preferences on using certain terms, or his/her preference for specific
commands, data types, and libraries. Figure 1 illustrates the mean TF-IDF values of the top-30
terms used by five programmers in nine C++ files of code. Even with slight difference for some
terms, the TF-IDF value differs from one programmer to another presenting its validity to be used
as initial representation of code files. If the values are composed into one vector for each program-
mer, then we can distinguish more distinctively each author by observing the distribution of the
values. Another observation is that the top features are for keywords of the used programming
language. Such observation suggests that a programmer cannot easily avoid being identified by
simply changing the variable names but rather by dramatically changing the programming style
itself. For example, it seems that “cout” should not have such a high TF-IDF score, because it is a
common command for printing out a message, but it has. This is because “cout” has been used by
only a small number of programmers solving problems in Google Code Jam, which in turn makes
the keyword distinctive. Thus, frequent use of “cout” can be regarded as some programmer’s pro-
gramming style.

3.2 Deep Representation of TF-IDF Features

Software authorship identification can be formulated as a classification problem, where authors
are classified based on their distinctive authorship attributes. The performance of machine learn-
ing methods relies on the quality of data representation (features or attributes), which requires
an expensive feature engineering process. This process is sometimes labor-intensive and heavily
dependent on human prior-knowledge in the classification application field [17]. Identification of
a large number of authors using TF-IDF directly cannot be easily achieved as can be seen in Fig-
ure 2(a). Recently, representation learning has gained increasing attention in the machine learning
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Fig. 2. The PCA visualization of TF-IDF and deep representation of software attributions for five

programmers.

community and has become a field in and of itself dedicated to enabling easier and more distinctive
feature extraction processes [18]. Among several representation learning methods, deep learning
has achieved a remarkable success in capturing more useful representations through multiple non-
linear data transformations. Deep learning representations have enabled several advancements in
many machine learning applications such as speech recognition and signal processing [20, 33, 43],
object recognition [32, 59], natural language processing [15, 19], and multi-task and transfer learn-
ing [16, 41]. Since the breakthrough work of Hinton et al. [44], multiple representation techniques
using deep learning were presented in the literature. Those techniques have been employed in
many fields, with various applications, as reported in References [16, 17]. One potential applica-
tion that was not previously explored in the literature is code authorship identification, which
we explore in this work. The techniques used in this article are the Long Short-Term Memory

(LSTM) and the Gated Recurrent Units (GRU), which are two popular configurations of the
RNN, one type of Deep Neural Networks (DNN).

Deep LSTMs and GRUs [62] with multiple layers demonstrated remarkable capabilities in gener-
ating representations from long input sequences in other applications. This work investigates both
LSTM’s and GRU’s capabilities of extracting software authorship attributions from TF-IDF code
representations. Both of those approaches are a good fit for our defined problem, because they scale
well, compared to alternatives; elaborate on this investigation in Section 4.2. We note that even
though RNNs are particularly popular for their use to process and model sequential inputs, there
are many applications of RNNs’ variants on non-sequential data [30, 31, 53, 57]. In our work, the
TF-IDF representations are fed into our deep neural network architecture (representation learning
module) as one sequence per software sample to generate high-quality representations that will en-
able an accurate authorship identification. To examine the characteristics of TF-IDF, we visualized
TF-IDF values of top-30 terms of five authors. For visualizing code samples of a programmer, we
used the Principal Components Analysis (PCA). The PCA is a statistical tool that is widely used
as a visualization technique that reflects the difference in observations of multidimensional data
for the purpose of simplifying further analysis [14, 38]. Figure 2 shows PCA visualizations of code
samples for five programmers with nine samples each. In Figure 2(a), code samples are represented
with the TF-IDF features, which are insufficient to draw a decision boundary for all programmers.
In Figure 2(b), however, the deep representations have increased the margin for decision boundary
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so distinguishing programmers has become easier. This visualization of the representations space
(TF-IDF features and deep representations) illustrates the quality of representations obtained using
deep learning techniques.

3.3 RFC over Deep Representations

To identify authors from feature representations of their code at scale, we need a scalable classifier
that can accommodate a large number of programmers. However, the deep learning architecture
alone does not give us a good accuracy (e.g., 86.2% accuracy for 1,000 programmers). Instead of
using the softmax classifier of the deep learning architecture, we use RFC [21] for the classification,
and by providing the deep representation of TF-IDF as an input. RFC is known to be scalable, and
our target dataset has more than 8,000 authors (or classes) to be identified. Such a large dataset
can benefit from the capability of RFC.

Our authorship identifier is built by feeding a TF-IDF-based deep representation extracted by
RNN and then classifying the representation by RFC. This hybrid approach allows us to take advan-
tage of both deep representation’s distinguishing attribute extraction capability and RFC’s large-
scale classification capability.

4 DEEP LEARNING-BASED CODE AUTHORSHIP IDENTIFICATION SYSTEM

Our approach for large-scale software authorship identification has three phases: preprocessing,
representation through learning, and classification. We briefly highlight those phases in the follow-
ing and explain each phase of the proposed approach in more details in the subsequent subsections.

Preprocessing. Based on the available code format, the preprocessing phase aims to define the
target code to be analyzed. For the source code of different programming languages, the prepro-
cessing phase entails cleaning and preparing the code samples for the initial TF-IDF representa-
tions. On the other hand, for executable binary code, the preprocessing phase includes defining
the toolchain provenance such as compiler family and version, compilation optimization level, and
source code language, and so on. After defining the toolchain provenance of the presented binary
code, a reverse engineering process takes place to obtain pseudo-codes as the higher translation
of the program binary code. These pseudo-codes are then analyzed for authorship attribution and
represented with the TF-IDF initial representations.

The initial representations of code samples are later fed into a deep learning architecture to
learn more distinctive features. Finally, deep representations of code authorship attributions are
used to construct a robust random forest model. Figure 3 illustrates the overall structure of our
proposed system. In the first phase, a straightforward mechanism is used to represent source code
files based on a weighting scheme commonly used in information retrieval.

Representation by Learning. This phase includes learning deep representations of authorship
from less distinctive ones. Those representations are learned using an architecture with multiple
RNN layers and fully connected layers.

Classification. After training the deep architecture, the resulting representations are used to
construct a random forest classifier with 300 trees grown to the maximum extent.

4.1 Data Preprocessing

The first phase of the proposed system is to handle available software samples to ensure an efficient
initial representation process. This process varies considering the available code format, i.e., source
code is a subject to a different preprocessing phase compared to executable binary code. However,
both source and binary code files are represented initially with TF-IDF features by the end of the
preprocessing phase. Note that previous works, e.g., References [25, 28, 29, 51, 52, 54] have used
TF-IDF or a variation TF-IDF as part of the feature extraction of authorship attributes. In this
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Fig. 3. A high-level illustration of the proposed deep learning-based software authorship identification sys-

tem. This illustration shows the three phases of preprocessing (TF-IDF feature representation), better rep-

resentation through learning (using the RNN and fully connected layers), and the classification (using 300

trees in a random forest classifier).

work, we only use TF-IDF representation as an initial representation for a deep learning model
that is trained to extract more robust and distinctive authorship traits. The following describes the
preprocessing phase with respect to the available code format.

Preprocessing for source code. The source code is processed to eliminate comments, copy-
right headers, program description, layout restrictions and features (such as tabs, spaces, and lines),
and stop words. Since only n-grams are considered for the TF-IDF representation of code samples,
the layout features and stop words are irrelevant, and are excluded from the initial representation.
In this work, we conduct experiments on the source code of four programming languages, and by
applying the same preprocessing steps. Moreover, obfuscated code using code-to-code obfuscation
tools, e.g., Tigress or Stunnix, are treated as source code, and we follow the same procedure as with
the source code from the different programming languages.

Preprocessing for binary code. When the available code is in a binary format, the first step
is to identify the toolchain provenance such as compilation tools and settings. We assume the
toolchain provenance of the presented binary codes is known, since the current state-of-the-art
tools have this capability with a high degree of accuracy [60]. Being able to identify the source
of the binary code, there are powerful tools to reverse engineer the binary code to higher level
constructs via disassembly or/and decompilation process.

Both disassemblers and decompilers are capable of generating textual translations of binary code
that can be an easier subject of analysis. On the one hand, disassemblers provide a straightforward
one-to-one translation of binary instructions to instruction mnemonics. Among many powerful
disassemblers available on the field, radare2 [5] and IDA-Pro [4] are the most commonly utilized
disassemblers with a wide-range of utilities. On the other hand, decompilers generate even higher-
level translations of the binary code with concise C-like pseudocode. Compared to disassemblers,
decompilers generate 5 to 10 times shorter outputs for the same binary program, e.g., typical bi-
nary program with size (400 KB–5 MB) can generate a decompiled code of size mostly less than
10 MB. Therefore, we use a decompilation process to generate high-level translations of software
binaries. In our experiments on authorship attribution of executable binary code, we use Hex-
Rays [3], a state-of-the-art commercial decompiler. The generated decompiled pseudo codes via a
decompilation process are often larger in size than the original source code. However, we treat the
generated pseudo code similarly as the source code in our analysis.

Both source and decompiled code files are represented by TF-IDF, as described in Section 3.1.
TF-IDF is a standard term weighting scheme commonly used in information retrieval and
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document classification communities. While we could have used TF instead, we use the TF-IDF
to minimize the effect of frequent terms in a given corpus. This is due to the observation that more
distinctive terms appear in certain documents (code files) rather than in most of the corpus. In our
implementation, we use several methods for optimizing the representation of documents, such
as eliminating stop words, normalizing representations, and removing indistinctive features. We
note that TF-IDF representations cover word unigrams, bigrams, and trigrams in the presented
code files, meaning a term can be a term of one, two, or even three words. As such, the single
TF-IDF input vector for a document di to the deep learning model is represented as follows:

[TF-IDF(t1,di ,D),TF-IDF(t2,di ,D), . . . ,TF-IDF(tn ,di ,D))] ,

where n is the total number of terms in the corpus D. To train our model, a set of documents for
each user is used to calculate the above vector. However, targeting a corpus of thousands of code
files may lead to high-dimensional vector representations (i.e., too many terms). Several feature
selection methods that reduce the dimensionality using statistical characteristics of features exist.
In this work, we investigated different feature selection methods for representing code files to be
further fed into the deep learning model, and we found that all approaches lead to similar results.
For every term ti and every document di , we calculate

xi =
⋃

j=1, ..., |D |
TF-IDF(ti ,dj ,D), (1)

where ∪ is a feature selection operator such as the order of term frequency, chi-squared (χ 2) value,
mutual information, or univariate feature selection. Using Equation (1), xi ’s for all terms in the
corpus are calculated.

Feature Space. Among the n features, we choose the top-k terms for which xi ’s are the largest
to reduce the dimensionality and form an input vector to the learning model. For simplicity, we
adopt the embedded function of selecting the top-k features by the TF-IDF vectorizer available by
the scikit-learn package, which uses the order of term frequencies across all files. With TF-IDF as
the method used to represent code files, the feature space needs to be sufficient to distinguish files’
authors. For large dataset containing thousands of files (e.g., more than 1,000 programmer with
nine files each), the top-k features (for a fixed k) may or may not be sufficient to enable the model
to identify authors accurately. As such, we investigated the number of features considered to rep-
resent code files as an optimization problem of accuracy. This experiment suggested that 2,500
features are sufficient for the subsequent experiments. The high dimensionality is likely to intro-
duce overfitting issues, but we addressed the overfitting issues by two regularization techniques
(see Section 4.2), and also conducted all the experiments by repeated k-fold cross validations (see
Section 4.3). Figure 4(a) shows the impact of feature selection, using four different approaches, on
the accuracy of our approach using TF-IDF features in identifying code authors. In this experi-
ment, we use 1,000 features to identify authors in a 250 C++ programmers experiment. The results
demonstrate a substantial accuracy rate (of over 96%) for the given problem size. In Figure 4(b), we
demonstrate the impact of the number of the selected TF-IDF features on the accuracy of the clas-
sifier. We note that the accuracy increases up to some value of the number of features after which
it decays quickly. The accuracy, even with the smallest number of features, is relatively high.

4.2 Deep Representation of Code Attributes

For deep representations, we used multiple RNNs and fully connected layers in a deep learning
architecture. For our implementation, we used TensorFlow [7], an open source symbolic math
library for building and training neural networks using data flow graphs. We ran our experiments
on a workstation with 24 cores, one GeForce GTX TITAN X GPU, and 256 GB of memory. We note
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Fig. 4. Feature selection analysis.

that our use of the GeForce GTX TITAN X GPU is purely performance driven, and the specific
platform does not affect the end-results. Upon the release of our scripts and data, our findings can
be reproduced on any other experimental settings.

Addressing Overfitting. To control the training process and prevent overfitting, two differ-
ent regularization techniques were adopted. The RNN layers in our deep learning architecture
included a dropout regularization technique [64]. In essence, this technique randomly and tempo-
rally excludes a number of units on the forward pass and weight updates on the backward pass
during the training process. The dropout regularization technique has been shown to enable the
neural network to reach better generalization capabilities [64].

The second technique concerns the fully connected layers. For that we use the L2 regular-

ization, which penalizes certain parameter configurations: given a loss function loss(θ , D) =
1
n

∑n
i=1 d (yi , ŷi ), where θ is the set of all model parameters, D is the dataset of length n samples,

and d () indicates the difference between DNN’s output ŷi and a target yi , the regularization loss
becomes Regloss (θ ,D) = 1

n

∑n
i=1 d (yi , ŷI

′
i ) + [λ × Reg(θ )], where λ is a constant that controls the

regularization and Reg(θ ) = (
∑ |θ |

j=0 |θ j |p )
1
p , where p = 1 or 2 (hence, the L1 and L2 nomenclature).

Selecting Layers. The parameters of our final architecture of our deep learning model were
chosen upon various iterations of experiments. We experimented with different architectures to
explore the effects of the model design on its performance. Table 2 shows the results of using differ-
ent models including simple feed-forward neural network, LSTM, and GRU. To explore the model
design, we used a dataset of 250 C++ programmers with nine files each. The experiments were
restricted to 500 training iterations and 1024 units for each adopted layer. The results show that
LSTM and GRU improve the performance. We utilized RFC on top of the features learned through
the deep learning architecture. The RFC is constructed using 100 trees grown to the maximum
extent. Eventually, we chose an architecture with three RNN layers (i.e., LSTM or GRU) with a
dropout keep-rate of 0.6, followed by three fully connected layers with ReLU activation. Each of
the fully connected layers has 1024 units except the last layer, which has 800 units representing
the dimensionality of the code authorship features for a given input file.

During the representation learning process, this architecture is connected to the softmax out-
put layer that represents the class of authors to direct the training process. The training process
follows a supervised learning approach, where only the intended model is meant to provide a data
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Table 2. The Results of Different Model Architecture Designs

TF-IDF FC FC FC LSTM LSTM LSTM GRU GRU GRU FC FC FC Sotmax RFC
2500 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 78.62
2500 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 800 72.76 83.91
2500 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1024 800 80.58 88.27
2500 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 800 79.73 87.96
2500 1024 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 800 82.49 88.62
2500 1024 1024 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 800 82.09 90.53
2500 1024 1024 1024 ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 800 83.38 92.31
2500 ✗ ✗ ✗ 1024 ✗ ✗ ✗ ✗ ✗ 1024 1024 800 87.91 91.47
2500 ✗ ✗ ✗ 1024 1024 ✗ ✗ ✗ ✗ 1024 1024 800 89.51 93.51
2500 ✗ ✗ ✗ 1024 1024 1024 ✗ ✗ ✗ 1024 1024 800 90.27 95.29
2500 ✗ ✗ ✗ ✗ ✗ ✗ 1024 ✗ ✗ 1024 1024 800 87.47 91.20
2500 ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 ✗ 1024 1024 800 88.98 94.13
2500 ✗ ✗ ✗ ✗ ✗ ✗ 1024 1024 1024 1024 1024 800 89.82 95.07

FC, fully connected layer; LSTM, Long-Short Term Memory; GRU, Gated Recurrent Unit; RFC, Random Forest Classifier.

The results are obtained by a ninefold cross-validation process using a dataset of 250 C++ programmers. All deep learning

models are trained for 500 iterations. The “✗” indicates excluding the layer, and the number indicates the layer size.

transformation that leads to the best probability of its correct class label. Targeting a large-scale
code authorship identification problem with thousands of programmers, which translates to thou-
sands of classes, the deep learning architecture alone does not accurately identify programmers.
Thus, we use the output of the layer Lk−1 (where the Lk is the softmax layer) to be the deep repre-
sentations of code authorship features. Deep representations of the code authorship features are
then subjected to a classification process using the RFC (Section 3.3), which is proven to be robust
and scalable, accommodating large datasets. Table 2 shows that using the RFC on top of the deep
representations improves the accuracy in all experimental settings. We note that, in our design we
construct the RFC with 300 trees grown to the maximum extent to account for the scale of our
dataset.

Training Procedure. The weights of the learning network were initialized using a normal
distribution of small range near 0, a small variance, and mean of 0. To train our deep learning
architecture, we used TensorFlow’s Adaptive Moment estimation (Adam) [48] with a learning
rate of 10−4, and without reducing the learning rate over time. Adam is an efficient stochastic opti-
mization method that only requires first-order gradients with little memory requirements. Using
estimations of the first two moments of the gradients, Adam assigns different adaptive learning
rates for different parameters. This method was inspired by combining the advantages of two popu-
lar stochastic optimization methods, AdaGrad [36], which is efficient for handling sparse gradients,
and RMSProp [67], which is efficient for on-line and non-stationary settings [48].

Further Optimizations. In the training process of the deep learning architecture, we used a
mini-batch size ranging from 64 to 256 observations. The idea of using mini-batches reduces the
variance in gradients of individual observations, since observations may be significantly differ-
ent. Instead of computing the gradient of one observation, the mini-batch approach computes the
average gradient of a number of observations at a time. This approach is widely accepted and com-
monly used in the literature [62]. The training termination mechanism was either to reach 100,000
iterations or to achieve an early termination threshold for the loss value.

4.3 Code Authorship Identification

Using deep authorship features learned in Section 4.2, we construct an RFC for code authorship
identification. In doing so, and based on various experiments, we select 300 decision trees for an
RFC—this configuration has shown to provide the best tradeoff between the model construction
time and its accuracy [28].
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Implementation. We used scikit-learn to implement the RFC using the default settings for
building and evaluating features on each split, and all trees were grown to the largest extent with-
out pruning. Following the approach adopted in Reference [28], we report results of test accuracy
using stratified k-fold cross-validation [49], where k depends on the number of observations per
class in the dataset (i.e., ninefold used for nine files per author, sevenfold for seven files per author,
and so on). The k-fold cross-validation technique aims to evaluate how well our model will gener-
alize to an independent dataset. In this model, the original dataset is randomly partitioned into k
equal-sized subsets. Of the k subsets, a single subset is used for testing, and the remaining k − 1
subsets are used for training. This cross-validation is repeated k times, where each subset is given
a chance to be used for testing the model built from the k − 1 subsets, and the evaluation metric
(e.g., accuracy) is the computed as average of the k validations.

Parameters Tuning. Through various experiments we confirm that choosing less than 300
trees (and as few as 100 trees) may degrade the accuracy by only 2%.

5 AUTHORSHIP IDENTIFICATION OF SOURCE CODE

In this section, we present the results of several experiments to address various possible scenarios
of our identification approach. In our evaluation, we deliver the following: (1) We present results of
code author identification over a large dataset. We demonstrate our central results for programmer
authorship identification and how our approach scales to 6,635 programmers with nine files each
and to 8,903 programmers with seven files each. Our experiments cover the entire Google Code
Jam dataset from 2008 to 2016, an unprecedented scale compared to the literature (see Table 1).
(2) We investigate our system’s performance with fewer code files per author and demonstrate its
viability. (3) We evaluate the robustness of our identification system under programmers’ style evo-
lution and change in development environment, and demonstrate that changes minimally affect
the performance of our approach. We complement this study by exploring the temporal effects
of programming style on our approach of identification. (4) We push the state of identification
evaluation by looking into mixed language identification. Particularly, we show results using two
language files for programmers (C and C++, Java and C++, and Python and C++). (5) We exam-
ine how off-the-shelf obfuscators affect our system’s performance. Our results are promising: we
show that it is possible to identify authors with high accuracy, which may have several privacy
implications for contributors who want to stay anonymous through obfuscation (see Section 1). (6)
We investigate the applicability of our approach using real-world dataset collected from Github,
including two programming languages (e.g., C and C++).

5.1 Data Corpus

The Google Code Jam (GCJ) is an international programming competition run by Google since
2008 [2]. At GCJ, programmers from all over the world use several programming languages and
development environments to solve programming problems over multiple rounds. Each round
of the competition involves writing a program to solve a small number of problems—three to
six, within a fixed amount of time. We evaluate our approach on the source code of solutions to
programming problems from GCJ. The most commonly used programming languages at GCJ are
C++, Java, Python, and C, in order. Each of those languages has a sufficient number of source code
samples for each programmer, thus we use them for our evaluation. For a large-scale evaluation, we
used the contest code from 2008 to 2016, with general statistics as shown in Table 3. The table shows
the number of files per author across years, with the total number of authors per programming
language and the average file size (lines of code, LoC). For evaluation, we create the following
three dataset views (Tables 3–5):
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Table 3. Datasets Used in Our Study with the Corresponding

Statistics, Including the Number of Authors with at Least a

Specific Number of Files across All Years

Competition
Year

Author
Files

No. of Authors for Languages
C++ C Python Java

Across Years 9 6,635 327 2,300 1,279

Across Years 7 8,903 566 3,458 1,952

Across Years 5 12,411 1,156 5,525 3,345

Average Lines of Code 71.53 65.20 44.44 86.70

Table 4. Two Datasets with the Corresponding Author Counts for

Authors Who Had Seven Files at the GCJ 2015 and 2016

Competitions

Competition
Year

Author
Files

No. of Authors for Languages
C++ C Python Java

2015 7 2,241 41 398 132
2016 7 1,744 21 390 317

across 3 years* 7 292 NA 44 50

*Programmers participated in 2014, 2015 and 2016

Table 5. A Dataset Used in Our Study to Demonstrate

Identification across Multiple Languages

Competition
Year

No. of Authors for Multiple Languages
C++-C C++-Java C++-Python

Across Years 1,897 855 626

The dataset includes authors with nine files written in multiple

languages.

Dataset 1: includes files across all years from 2008 to 2016 in a “cross-years” view, in Table 3.
Dataset 2: consists of code files for participants drawn from 2015 and 2016 competitions for
four programming languages, as shown in Table 4.
Dataset 3: consists of programmers who wrote in more than one language (i.e., Java-C++,
C-C++, and Python-C++) as shown in Table 5.

Number of Files. In Reference [28], the use of nine files per programmer for accuracy is recom-
mended. Our approach provides as good—or even better—accuracy with only seven files, as shown
in Section 5.3.

5.2 Large-scale Authorship Identification

Experiment. In this experiment, we used dataset 1 in Table 3. There are four large-scale datasets
corresponding to four different programming languages with programmers who have exactly nine
code files (first row in Table 3). The number of code files per author in this experiment was sug-
gested in Reference [28] to be sufficient for extracting distinctive code authorship attribution fea-
tures. In our experiment, we started each dataset with a small number of programmers and in-
creased this number until we included all programmers in the dataset. In particular, we used an
RFC with stratified ninefold cross validation to evaluate the accuracy of identifying programmers.
We repeated the k-fold cross validation five times with different random seeds and reported the
average.
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Fig. 5. Accuracy of authorship identification of programmers with nine sample code files per programmer

in four programming languages (C++. Java, Python, and C). Notice that the accuracy is always higher than

92% even with the worst of the two options of classifiers, and decay in the accuracy is insignificant despite

a significant increase in the number of programmers.

Evaluation Metric. For evaluation, we use the accuracy, defined as the percentage of code files
correctly attributed over the total number of tested code files. Using the accuracy instead of other
evaluation metrics (e.g., precision and recall) is enough, because the classes are balanced in terms
of the number of presented files per class in the dataset.

Results. Figure 5 shows how well our approach scales for a large number of programmers, and
for the different programming languages. The results report the accuracy when using different
RNN units in learning code authorship attribution and RFC for authors identification (i.e., using
either LSTM-RFC or GRU-RFC unit). In Figure 5(a), the LSTM-RFC performance results show that
our approach achieves 100% accuracy for 150 C++ programmers with randomly selected nine code
files. We note here that FPR is trivially computed as (1 - accuracy), because the dataset is balanced.
As we scale our experiments to more programmers, the accuracy remains high, with 92.2% accuracy
for 6,635 programmers. Given the same experimental configuration, similar results are obtained
for the Java programming language, as illustrated in Figure 5(b) with 100% accuracy when the
number of programmers is 50 programmers. Upon scaling the experiments to more programmers,
we achieve 99.42% accuracy for 150 programmers, and 95.18% accuracy for 1,279 programmers.
For the Python language dataset, our approach achieved an accuracy of 100% for 100 programmers,
98.92% for 150 programmers, and 94.67% for 2,300 programmers, as shown in Figure 5(c). Finally, for
the C programmers, Figure 5(d) shows that the accuracy reaches 100% for 50 programmers, 98.56%
for 150 programmers, and 95.2% for the total of 327 programmers. These results indicate that both
deep LSTMs and GRUs are capable of learning deep representations of code authorship attribution
that enable achieving large-scale authorship identification regardless of the used language.

5.3 Effect of Code Samples per Author

The availability of more code samples per author contributes to better code authorship identifica-
tion, whereas less code samples restrain the extraction of distinctive features of authorship [26, 28].

Experiment 1: Seven Files per Author. For this experiment, we created two datasets with
seven and five code samples per programmer for four different languages, as shown in Table 3
(second row). We used RFC with stratified sevenfold cross validation to evaluate the accuracy of
identifying programmers at the dataset with seven files per programmer. As the number of avail-
able code samples per author decreased, we found that the number of authors increased (Table 3).
This experiment investigates the effects of having fewer files per author on the accuracy of our
approach.
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Fig. 6. Accuracy of authorship identification of programmers with seven sample code files per programmer

in four programming languages (C++. Java, Python, and C). Notice that the accuracy is always high even

with large number of programmers.

Table 6. Results of the Accuracy of Our Approach in Authorship

Identification for Programmers Who Solved Seven Problems

Using the C++ Programming Language

Competition Year # Authors LSTM-RFC GRU-RFC

2015

150 98.98 98.24
300 98.64 97.94
450 98.1 97.6
600 97.56 97.21
750 97.28 96.67
900 96.34 96.4

1,000 96.32 95.98
1,500 95.88 95.22
2,000 95.67 94.9
2,241 95.23 94.67

2016

150 99.12 98.67
300 98.34 98.31
450 98 97.62
600 97.54 96.84
750 97.28 96.18
900 96.7 95.64

1,000 96.37 94.88
1,500 95.66 94.14
1,744 95.17 93.54

Results. Figure 6 illustrates the results of our approach using the dataset of all programmers
with seven code samples for four different programming languages. Figure 6(a) shows an accuracy
of 98.24% when using LSTM-RFC for 150 C++ programmers, and an accuracy of 92.3% for 8,903
programmers. Figure 6(b) shows an accuracy of 99.26% for 150 Java programmers when using
LSTM-RFC, and 97.24% accuracy when scaling the experiment to 1,952 programmers. Figure 6(c)
shows an accuracy of 98.24% when using LSTM-RFC for 150 Python programmers, and an ac-
curacy of 96.2% when scaling to 3,458. Finally, Figure 6(d) shows the result for C programmers,
where LSTM-RFC is used: an accuracy of 96.71% for 150 C programmers, and 93.96% for 566 C
programmers.
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Fig. 7. Accuracy comparison of authorship identification of programmers in case of five, seven, and nine

sample code files per programmer in four programming languages (C++. Java, Python, and C). Notice that

the accuracy is always higher than 92%, and regardless of the number of authors. While best results are

achieved for the larger number of files, the lowest number of files (of 5) still provides ∼92% in the worst case.

Comparison. Compared with the experimental result of identifying authors using nine code
samples per author, as in Section 5.2, the accuracy does not degrade even when using less code
samples per author. Moreover, the results show that our approach is still capable of achieving high
accuracy even with more authors compared to the previous experiments. This result presents the
largest-scale code authorship identification by far, indicating that seven files per author are still
sufficient for extracting distinctive features.

Experiment 2: Five Files per Author. We created a dataset with five source code samples per
programmer in the four different programming languages, as shown in Table 3 (third row). We
used RFC with stratified fivefold cross validation to evaluate the accuracy of identifying program-
mers at the dataset with five files per programmer. As the number of available code samples per
author decreased, we found that the number of authors increased (Table 3). This experiment fur-
ther investigates the effects of having even fewer files per author on the accuracy of our approach.

Results. Figure 7 shows the results for 1,000 programmers, demonstrating the effect of decreas-
ing the number of sample files for each author. Figure 7(a) shows that our approach provides
an accuracy of 96.77% for attributing authors in 150 C++ programmers when using LSTM-RFC.
Comparing the results of those datasets with the nine and seven source code samples for each
programmer, the accuracy loss was only 3.23% and 1.47%, respectively. As we scale to 1,000 C++
programmers, our approach achieves an accuracy of 94.84%. This result proves that our approach
still achieves high accuracy even with fewer sample files per programmer. The results of accuracy
with smaller number of files per author generalize to other programming languages. Using the
same approach and settings as above, Figure 7(b) shows an accuracy of 98.1% and 96.42% for 150
and 1,000 Java programmers, respectively. Figure 7(c) show an accuracy of 97.1% and 94.32% for
150 and 1,000 of Python programmers. Finally, Figure 7(d) shows an accuracy of 94.67% and 92.12%
for 150 and 1,000 C programmers, respectively.

Using only five code samples per author, the accuracy of our approach does not significantly
degrade. From those experiments we conclude that learning deep code authorship features using
either deep LSTMs or GRUs enables large-scale authorship identification even with limited avail-
ability of code samples per author.

Comparison with Related Work. We conducted a comparison with the related work. Con-
sidering the work by Caliskan-Islam et al. [28] and Abuhamad et al. [11], Table 7 shows that
our approach—using the LSTM architecture for deep feature representation followed by RFC for
classification—outperforms other methods. For the work of Caliskan-Islam et al. [28], we selected
the top-800 features by the information gain method to be comparable to our 800-dimensional
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Table 7. A Comparison with Related Work on Source Code Authorship Identification

C++ C
9 files (1000) 7 files (1000) 5 files (1000) 9 files (250) 7 files (500) 5 files (1000)

Caliskan-Islam et al. [28] 92.46 90.81 87.24 96.47 94.76 88.14
Abuhamad et al. [11] -TFIDF 86.24 84.19 82.82 91.64 89.54 86.42
Abuhamad et al. [11] -WE 81.67 78.43 72.91 89.61 84.92 71.90
This work 96.33 96.06 94.84 95.36 94.18 92.12

The results are reported using k-fold cross-validation method for a different number of files per author for a (total

number of authors).

feature vector. The RFC model was constructed with 300 trees grown to the maximum extent. For
the work of Abuhamad et al. [11], we used the stacked CNN architecture with three convolutional
layers and with an input of TF-IDF representation (TF-IDF) and word-embeddings (WE). We
followed the implementation details in the original work, and trained the models to 5,000 itera-
tions as no obvious improvement is shown after this number of iterations. Table 7 shows that our
approach achieves remarkable results using different datasets.

5.4 Effect of Temporal Changes

The literature suggests that temporal effect is a challenge for code authorship identification, since
the programming style of programmers evolves rapidly with time due to their education and ex-
perience [26, 28, 42]. We investigate the impact of temporal effect on source code authorship iden-
tification. The experiments include two parts: (1) exploring the existence of such impact on the
identification process and (2) examining our approach against such effect.

Experiment 1: Temporal Effect on Accuracy. This experiment answers the following ques-
tion: Do temporal effects influence the accuracy of code authorship identification?

To answer this question, we conducted an experiment where results from identifying authors
from the same year is compared with results across different years throughout the competition.
We examined our approach using a dataset of source codes written by programmers within one
competition year, where all programmers solve the same set of problems. Two datasets of GCJ
competition of the 2015 and 2016 code samples were created individually with seven code files
per programmer, as shown in Table 4. In this experiment, we used a random forest and stratified
sevenfold cross validation to evaluate the accuracy of identifying programmers.

Results. Table 6 summarizes the results of this experiment when applying LSTM-RCF and GRU-
RCF for C++ programmers in two separate years. The accuracy of code authorship identification
reaches 95.23% for 2,241 C++ programmers and 95.17% for 1,744 C++ programmers from 2015 and
2016 competitions, respectively. Our approach also shows high accuracy results for Java, Python,
and C programming languages, as shown in Table 8, Table 9, and Table 10.

In comparison with the cross-year dataset, results of this experiment are shown to provide better
accuracy, which indicates that temporal effects impact the accuracy of code authorship identifica-
tion. However, these effects are insignificant—e.g., only 0.74% (=98.98%–98.24%) for C++ with seven
files in the case of the year 2015. This is part due to the power of our approach in learning more
distinctive and deep features of the studied domain.

Experiment 2: Testing Different Year’s Dataset from Training Dataset. In this experiment
we attempt to answer the following question: If temporal effects do exist, can a model trained on

data from one year identify authors given data from a different year? To answer this question, we
collected a dataset of sample codes for programmers who participated in three consecutive years
from 2014 until 2016. The dataset include seven code files per programmer in each year. The total
number of programmers included in the dataset of different languages is shown in Table 4.
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Table 8. The Accuracy of Authorship Identification for

Programmers with Seven Samples Problems (Programs) Using

the Java Programming Language

Competition Year # Authors LSTM-RFC GRU-RFC

2015 132 99.64 99.12

2016
150 99.4 98.62
300 98.34 97.56
317 98.18 96.98

Table 9. The Accuracy of Authorship Identification for

Programmers with Seven Programs Using the Python

Competition Year # Authors LSTM-RFC GRU-RFC

2015
150 98.96 97.6
300 98.18 97.42
398 98 97.1

2016
150 99.1 98.6
300 98.67 97.34
390 97.94 96.47

Note that the accuracy is always above 96%.

Table 10. The Accuracy of Authorship Identification for

Programmers Who Solved Seven Problems Using the C

Programming Language

Competition Year # Authors LSTM-RFC GRU-RFC

2015 41 100 99.44

2016 21 100 100

Notice the accuracy is always close to 100%.

Table 11. The Accuracy of Authorship Identification

for Programmers Who Solved Seven Problems from

Three Different Years (2014–2016)

# Authors LSTM-RFC GRU-RFC
C++ 292 97.65 96.43

Python 44 100 100
Java 50 100 100

The identification models were trained on data from 2014

and tested on data from 2015 and 2016.

Results. We trained our models (LSTM-RFC and GRU-RFC) on data from the year 2014 and used
the data from 2015 and 2016 as a testing set. Table 11 shows that our approach of code authorship
identification is resilient to temporal changes in the coding style of programmers as it achieves
100% accuracy for both Python and Java languages and 97.65% for the 292 C++ programmers.

5.5 Identification with Mixed Languages

Here, we investigate code authorship identification for programmers writing in multiple program-
ming languages. In particular, in this section we attempt to answer the following question: Is it
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possible to identify programmers writing in multiple languages using one model trained with mul-

tiple languages? Some programmers develop programming skills in multiple languages and use
the preferable one based on the problem or the job at hand. To this end, we attempt to under-
stand whether learning about a programmers’ style in multiple languages without recognizing
languages contributes in identifying the programmer given codes written in multiple languages.
Despite the natural appeal to this problem and its associated research questions, there is no prior
research work on this problem. Thus, we proceed to understand the potential of identification for
multiple languages using our approach.

Experiment 1. We use dataset 3 (Table 5), which corresponds to authors with nine files (selected
randomly) written in multiple programming languages across all years. For training, we fed code
files in two languages without letting it know the languages (thus, the training process is oblivious
to the language itself). For testing, we also fed code files to the system without indicating what
language they are written in (thus, the testing process is oblivious to the language, too). Therefore,
we aim to demonstrate that our system is language-oblivious even under (stronger) mixed model.

Results. Figure 8 shows the accuracy of our approach with three datasets: C++/C, C++/Java, and
C++/Python. Figure 8(a) shows an accuracy of 96.34% for a dataset of 626 C++/C programmers with
LSTM-RFC, and its accuracy of 97.52% when used with LSTM-RFC on 855 C++/Java programmers,
as illustrated in Figure 8(b). For the C++/Python dataset, Figure 8(c) shows that our approach
provides an accuracy of 97.49% for 1,879 programmers.

Key Insight. The reported test accuracy follows a stratified cross-validation, where every code
file has been tested and contributed to the reported accuracy by being used in building the model.
Therefore, the model is tested to identify programmers based on code samples written in a language
that might not be present in the training data. This experiment shows that our approach is oblivious
to language specifics. Addressing a dataset of authors writing in multiple languages, our deep
learning architecture is able to extract high quality and more distinctive features, preserving code
authorship attributions through different programming languages.

Another observation is the non-monotonic results achieved using LSTM-RFC and GRU-RFC
when extending the number of included authors in the dataset. As both models are parametric
models, their performance depends on finding the best parameters within a fixed number of train-
ing iterations. Thus, the random initialization at the beginning might help the model converge
to better results faster than the other (if at all). The non-monotonic results (1–2% difference) are
explained by this optimality and convergence in independent runs with the fixed iterations.

Experiment 2. Another experiment was conducted to show the capability of our approach
in identifying authors where the identification features are entirely extracted from a different pro-
gramming language. The aim of this experiment is to answer the following question: Given samples

of code written by programmers in one language (e.g., C++), is it possible to identify those program-

mers when writing in a different language (e.g., C)? From the 1,897 programmers who used C++
and C in dataset 3 (Table 5), we extracted a dataset of 224 programmers, where 70% of the samples
per author are written in C++ while the remaining 30% are written in the C language. Using our
approach, we trained an LSTM-RFC using the 70% of samples written by the 224 programmers in
C++ and tested the LSTM-RFC model on the remaining 30% of C samples. As a result, our approach
achieved 90.29% of accuracy for identifying programmers with features extracted from code writ-
ten by them in a different programming language, highlighting its language-agnostic identification
capabilities.

6 AUTHORSHIP IDENTIFICATION OF BINARY CODE

We examine the robustness of our approach in identifying authors of executable binaries. Previous
research by Rosenblum et al. [61] extracted authorship features directly from the binary code to

ACM Transactions on Privacy and Security, Vol. 24, No. 4, Article 23. Publication date: July 2021.



Large-scale Code Authorship Identification 23:23

Fig. 8. The accuracy of the authorship identification of programmers with sample codes of two programming

languages.

enable the identification of 161 programmers with 51% accuracy, while the work of Caliskan-Islam
et al. [29] improved this accuracy to 92% using features extracted from different levels of the de-
compilation process. Caliskan-Islam et al. [29] extracted features from assembly code and abstract
syntax tree of decompiled code. These features enabled the binary code authorship identification
of 600 programmers with an accuracy of 83%. The authors used an approach of four steps to iden-
tify programmers of binary code, namely: disassembly, decompilation, dimensionality reduction
and classification. In this work, we use a similar approach without the requirement of extracting
features from different levels. Instead, we use Hex-Rays, a commercial powerful decompiler, to
decompile executable binaries to generate C-like pseudo code. The generated pseudo code can be
described as a translation of the program instructions using higher level constructions that pre-
serve the program’s control structures such as loops and branches. These features have shown a
high degree of significance in attributing programmers in previous works. Therefore, we conduct
several experiments to evaluate our approach in identifying programmers of executable binaries.

Assumptions. We assume the availability of binary samples of authors to be identified. Addi-
tionally, we examine our approach to identify authors of tested executable binary programs under
the assumption of knowing the toolchain provenance such as compiler family and version, compi-
lation optimization level, and source code language, and so on. These assumptions consistent with
the literature of identifying programmers of software binary code [29]. Moreover, state-of-the-art
tools and methods can identify with high accuracy the toolchain provenance of a given exactable
binary [60]. Therefore, we assume that such techniques are used to define the toolchain prove-
nance of a given binary code and use our models that are trained using samples compiled with
same settings.

6.1 Binary Code Dataset

Using a dataset of 6,962 C and C++ programmers participated in GCJ from 2008 to 2016 with at
least nine files, we created a dataset of executable binaries for 1,500 programmers to evaluate our
approach in identifying authors using binary format. We used GNU Compiler Collection’s GCC
or G++ to compile C and C++ source codes, respectively, into 32-bit Intel 80386 Unix binaries with
Executable and Linkable Format. Moreover, we also use different compilation optimization levels to
examine the effects of resultant binaries in the authorship identification process. GNU Compiler
provides different optimization levels corresponds to different flags such as O1, O2, O3, and Os
flags. When an optimization flag is turned on, the compiler generates different binaries that vary
in some attributes such as code size, execution time, memory utilization, and so on. Using a higher
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Fig. 9. The accuracy of the authorship identification of programmers using their binary samples compiled

with no optimization.

level of compilation optimization results in advanced and more optimized binary code. However,
compilation with optimization requires more time and memory resources than compilation with
no optimization.

6.2 Authorship Identification of Binary Code

In this experiment, we processed the dataset of 1,500 programmers with at least nine binary sam-
ples produced from a compilation without optimization process. Figure 9 shows that our approach
accurately identified programmers on a large-scale binary dataset. Using ninefold-cross-validation
LSTM-RFC, our approach achieved an accuracy of 98.4% for identifying 250 programmers. when
increasing the scale of our experiment to include 1,500 programmers, our approach achieved an
accuracy of 95.74%. These results show that our approach can identify programmers of executable
binaries more accurately and on a larger scale than previous approaches.

6.3 Effect of Compilation Optimization

Since our approach achieved high accuracy in identifying programmers of binary code generated
from a compilation process without optimization, this experiment explores the effects of different
optimization levels on the code authorship identification using our approach. There are different
optimization levels that can be incorporated with the compilation process to advance the optimiza-
tion of certain attributes of an executable program. The optimization techniques transform a given
program to a semantically equivalent program that is more efficient than the original program. For
this experiment, we use four levels of optimization that can be turned on by O1, O2, and O3, Os
flags for GCC compiler family. Using different optimization techniques that generates different
binaries enables a better understanding of their effects on authorship attribution. Figure 10 shows
the result of our approach in identifying 1,500 programmers with nine binary samples generated
with different optimization level. Figure 10(a) shows the results of our approach using ninefold-
cross-validation on a dataset generated by a compilation process with level-1 optimization. The
LSTM-RFC approach achieved 98.1% accuracy for identifying 250 programmers, and 95.75% for
identifying 1,500 programmers. Compared to the result obtained when no optimization is used, this
result shows no accuracy degradation as the optimization technique is introduced. Using level-2 op-
timization, Figure 10(b) shows that our approach achieves an accuracy of 97.8% for identifying 250
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Fig. 10. The accuracy of the authorship identification of programmers using their binary samples com-

piled with different optimization options, showing promising accuracy results even with decompiled binary

samples.

Fig. 11. The accuracy of the authorship identification of programmers using stripped binary dataset.

programmers and an accuracy of 95.6% for identifying 1,500 programmers. Similar results are ob-
tained when using O3 optimization flag, Figure 10(c) shows that LSTM-RFC achieved an accuracy
of 97.4% for identifying 250 programmers and an accuracy of 94.57% for identifying 1,500 program-
mers of binary code generated from a compilation with O3 optimization. Figure 10(d) shows that
using Os optimization does not affect the identification accuracy as LSTM-RFC achieved 96.8%
identification accuracy of 250 programmers and an identification accuracy of 93.82% for 1,500
programmers. The results achieved by different binary datasets generated from compilation with
different optimization techniques show that our system is robust to different optimization and ca-
pable of extracting relevant authorship attributes that enabled accurate authorship identification.

6.4 Identification with Stripped Binary Code

In this experiment, we investigate the effects of stripping the symbol information from the binary
code on the identification accuracy of our system. Using a fully stripped binary code, where all sym-
bol table and relocation information are stripped using the GNU strip option, we show the effect of
symbol information on authorship attribution. Figure 11 shows that the system was capable of gen-
erating high-quality deep representations that enabled accurate authorship identification. Compar-
ing to previous works [29, 61], our approach shows robustness to different compilation settings
including stripping symbol information. Even when symbol information is completely missing, the
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Table 12. A Comparison with Related Work on Binary Code Authorship Identification

No optimization O1 O2 O3 OS Stripped
Caliskan-Islam et al. [29] 91.36 89.57 86.21 86.76 81.61 68.97
This work 98.43 98.13 97.80 97.41 96.84 94.60

The results are reported using ninefold cross-validation method for a dataset of 250 programmers with 9 files

each.

deep learning architecture is capable of transforming the input information presented in binary
samples to robust deep representations of authorship attribution. Unlike other works that attempt
to generalize features across different compilation settings, the deep learning architecture tune
parameters that allow best representations based on a given input data or settings. For example,
Caliskan-Islam et al. [29] showed that attempting to identify programmers of stripped binary code
using the same feature set used for unstripped binaries can cause an accuracy degradation of 24%.

Comparison with Related Work. We conducted a comparison with the work of Caliskan-
Islam et al. [29] using a dataset of binaries for 250 programmers with 9 files each. Table 12 shows
the results achieved by the two works. Our approach maintained a high identification accuracy
even with the different levels of optimization. When stripping the binaries, our approach achieved
high identification accuracy of 94.60% for the 250 programmers, while the work of Caliskan-Islam
et al. [29] has shown a degradation of 22.39% (i.e., 91.36–68.97).

7 AUTHORSHIP IDENTIFICATION OF OBFUSCATED SOFTWARE

The basic assumption for the operation of our approach is that TF-IDF can be extracted from
the original software program, presumably from an unobfuscated code. As such, one potential
way to defeat our approach of authorship analysis (e.g., in a malware attribution application) is
to obfuscate the code. In such a scenario, the underlying model would be built (in the training
phase) using a certain dataset, and in the actual operation an obfuscated file would be presented
to the model for identification. Our approach, if implemented in a straightforward manner, would
possibly fail to address this circumvention technique. Thus, a central question is, if the model is
trained with obfuscated codes, will it be able to identify authors if obfuscated codes are presented
for testing?

Assumption. We examine how obfuscation affects our approach, and whether it would be pos-
sible to still get attribution features under obfuscation for testing obfuscated files. This requires the
assumption that we know what obfuscation technique was used, where we transform the training
set before building the model, which is a clear limitation of our approach. Deciding what obfus-
cation technique is used is out of scope of this article, but every obfuscation tool has a unique
technique to amplify the obfuscation effect, which would be a hint to find the obfuscator.

The availability of several obfuscation tools and methods can allow programmers to attempt
obfuscation as a method to ensure privacy and evade identification. Moreover, programmers might
adopt obfuscation on the source code level or the binary level. In the following subsections, we
show the effects of different obfuscation approaches on the software authorship identification.

7.1 Software Source Code Obfuscation

In this experiments, we investigate the effects of code-to-code obfuscation on authorship attribu-
tion. Different obfuscation tools are available, and two among them were chosen to evaluate our
approach: Stunnix [1] and Tigress [6]. The main reason for choosing these two obfuscation tools
is because each represents a different approach for code-to-code obfuscation. Stunnix is a popular
off-the-shelf C/C++ obfuscator that gives code a cryptic look while preserving its functionality
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and structure. Tigress, however, is a more sophisticated obfuscator for the C language; it imple-
ments function virtualization by converting the original code into an unreadable bytecode. For our
experiment on code authorship identification of Tigress-obfuscated code, we turned on all of the
features of Tigress.

Experiment 1: Stunnix. The first experiment is targeted toward a C++ dataset of 120 authors
with nine source code files obfuscated using Stunnix. Our approach was able to reach 98.9% accu-
racy on the entire obfuscated dataset of 120 authors and 100% accuracy on an obfuscated dataset
of 20 authors. Figure 12(a) shows the accuracy achieved using our approach on different Stunnix-
obfuscated C++ datasets ranging from 20 to 120 authors using two different RNN units. The result
of this experiment indicates that our approach is robust and resistant to off-the-shelf obfuscator.

Experiment 2: Tigress. We use a C dataset of 120 authors with nine source files each, obfus-
cated using Tigress. Even with this sophisticated obfuscator, our approach achieves 93.42% on the
entire dataset while maintaining an accuracy of over 98% on a subset of 20 authors. Figure 12(b)
shows the achieved accuracy on different Tigress-obfuscated C datasets ranging from 20 to 120
authors using two different RNN units. The results also indicate the resilience of our approach to
sophisticated obfuscators such as Tigress. Despite the unreadability of the obfuscated code using
Tigress, which makes such obfuscated code unreadable, the result of our experiment highlights
that code files are no longer unidentifiable.

7.2 Software Binary Code Obfuscation

In this experiment, we investigate the effects of binary obfuscation on the identification accuracy.
Among many tools for software binary obfuscation, we use Obfuscator-LLVM [45] to generate
obfuscated binary code using different features. The Obfuscator-LLVM provides different levels of
obfuscation including control flow flattening, instruction substitution, bogus code injection, and
so on. The aim of this experiment is to examine the robustness of our approach in identifying
programmers of obfuscated binary code even when different obfuscation levels are introduced.

For this experiment, we use the same dataset of 1,500 programmers used for the experiments
on authorship identification of software binaries in Section 6. Programmers might adopt several
techniques to circumvent authorship identification on the binary level of a program using control
flow flattening, instruction substitution, bogus code injection or all options combined to make it
difficult for analysis and authorship attribution. We address these different scenarios of obfuscation
and show their effects on software authorship identification. Figure 13 shows results of different
experiments conducted using different obfuscated binaries.

Experiment 1: Control flow flattening. Obfuscation through control flow flattening aims to
hide the flow structure of a program using code transformations that target all basic blocks of a
program. One way to achieve control flow flattening is to split all the program’s basic blocks, e.g.,
functions, loops, branches, and so on, in a certain way that can be grouped inside one single infinite
loop that operates on switch statement to control program’s flow. This technique of obfuscation
complicates the understanding of the program structure that can be indicative of authorship. We
used the control flow flattening option in Obfuscator-LLVM tool to examine the effects of this
technique on authorship attribution. Figure 13(a) shows the results of authorship identification
of control flow flattened binaries using our approach. The results show that our approach still
resilient to this kind of obfuscation by achieving an accuracy of 97.2% in identifying 250 program-
mers and accuracy of 94.22% for 1,500 programmers.

Experiment 2: Instruction substitution. Obfuscation through instruction substitution is a
straightforward technique aims to replace standard instruction with a series of functionally equiv-
alent instructions. This technique of obfuscation increases the code size and can be simply evaded
by an optimization process. Therefore, such a technique alone might not be the optimal choice
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Fig. 12. The accuracy of authorship identification with obfuscated source code, showing promising results

even with the more sophisticated obfuscation approach (Tigress).

Fig. 13. The accuracy of authorship identification with obfuscated binary code using different Obfuscator-

LLVM options.

for obfuscation but it can add complication when used with other obfuscation techniques. Using
instruction substitution obfuscation, Figure 13(b) shows similar results for our approach with an
accuracy of 97.42 % for identifying 250 programmers and an accuracy of 94.36% for identifying
1,500 programmers.

Experiment 3: Full Obfuscator-LLVM obfuscation. In this experiment, we allowed all ob-
fuscation options offered by Obfuscator-LLVM, including, control flow flattening, instructions sub-
stitution, and bogus control flow. Using a dataset of fully-obfuscated binary code, our approach
shows remarkable resilience by achieving high identification accuracy on different scales as pre-
sented in Figure 13(c). In Figure 13(c) shows that our approach achieved an accuracy of 96.98%
for identifying 250 programmers and an accuracy of 93.86% when increasing the scale to 1,500
programmers.

Comparison with Related Work. We conducted a comparison with the related work on ob-
fuscated code authorship identification, considering both code-to-code obfuscation and binary ob-
fuscation. We followed the same obfuscation methods described in Section 7.1 to generate the C++
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Table 13. A Comparison with the Related Work on Obfuscated Code Authorship Identification

Stunnix-obfuscated Tigress-obfuscated O-LLVM-obfuscated
Caliskan-Islam et al. [28] 98.89 67.22 ✗
Abuhamad et al. [11] -TFIDF 97.34 71.34 ✗
Abuhamad et al. [11] -WE 95.87 74.38 ✗
Caliskan-Islam et al. [29] ✗ ✗ 92.76
This work 99.60 98.89 98.94

The results are reported using ninefold cross-validation method for a dataset of 20 programmers with 9 files each.

Stunnix-obfuscated dataset and the C Tigress-obfuscated dataset of 20 programmers with nine files
each. Table 13 shows the results achieved by different authorship identification methods on the
obfuscated code. Our approach shows remarkable results, even with sophisticated code-to-code
obfuscation such as Tigress. Similarly, for the binary obfuscated code, our approach maintains
a high identification accuracy even with full Obfuscator-LLVM obfuscation (Section 7.2). Our ap-
proach achieves an accuracy of 98.94% compared to 92.26% achieved by the work of Caliskan-Islam
et al. [29].

8 AUTHORSHIP IDENTIFICATION IN THE REAL WORLD

This section explores the robustness of our system using real-world scenarios. We examine our
approach using a dataset collected in the wild from the code sharing platform (GitHub). Moreover,
we show possible ways of handling the open-world assumption to identify new programmers
who might not be seen by the model before. Handling such situations allows the model to have
a certain validity when applied in the real world as the model might be tested on samples of
programmers who have not included in the training process. Another possible application of our
system is malware attribution. Although malware attribution is a challenging task due to the lack
of ground-truth dataset, it is possible to apply deep authorship representation to assign malware
to families and groups that enable sufficient analysis.

8.1 Software Authorship Identification in the Wild

This section investigates the applicability of our approach when the code samples are collected
from public code sharing platforms such as GitHub. Handling software authorship attribution in
the wild adds some challenges as there are no guarantees on the ground truth of authorship. The
code reuse and multiple collaboration on software projects make attributing software much chal-
lenging. Since we had such success in identifying programmers participated in GCJ, we examine
our system on a dataset collected in the wild.

We randomly sampled 2,000 repositories from GitHub that list C and C++ as the primary lan-
guage and published by one contributor. We initially excluded 13 repositories that were not fit for
the experiments for not having the targeted number of C++/C files. Upon processing the reposi-
tories and removing the incomplete files/samples, the collected C++ and C datasets included 142
and 745 programmers, respectively, with at least five code samples each. Since some authors have
more than 10 samples, we have randomly selected 10 samples per author. For the ground truth
of our dataset, we collected repositories with a single contributor under the assumption that the
collected samples are written by the same contributor of the repository. We acknowledge that this
assumption is not always valid, because parts of the code samples might have been copied from
other sources [34]. Even under those acknowledged limitations of the ground truth, our evalua-
tion is still conservative with the respect to the end results: it attempts to distinguish between code
samples that may even include reused codes across samples.

ACM Transactions on Privacy and Security, Vol. 24, No. 4, Article 23. Publication date: July 2021.



23:30 M. Abuhamad et al.

Fig. 14. The accuracy of the authorship identification of programmers using GitHub dataset, showing promis-

ing results even with real-world code samples.

Experiment 1: Source code authorship identification in the wild. For this experiment, we
process the collected dataset using the source code files. Figure 14 shows the results of our approach
using GitHub C++ and C datasets. Figure 14(a) shows an accuracy of 100% when using LSTM-
RFC for 50 C++ programmers and 95.21% for 147 programmers. Figure 14(b) shows an accuracy
of 94.38% for 745 C programmers using LSTM-RFC. This result shows that our approach is still
effective when handling a real-world dataset.

Experiment 2: Binary code authorship identification in the wild. For this experiment, we
compiled code files of the collected dataset in the wild using the same compilation options pre-
sented in Section 6. Using code files of 142 (C++) and 745 (C) programmers, we successfully gener-
ated a dataset of a total of 241 programmers who have at least nine files that we were able to com-
pile. For the compilation process, we generated binaries with level O3 optimization and removed
all debugging symbols. Using the dataset of binary code, our approach achieves an accuracy of
92.13% in identifying 241 programmers. This result demonstrates that using deep representations
of authorship attribution enables accurate authorship identification in the wild.

Key Insight. The reported results using the GitHub dataset show some accuracy degradation in
comparison with the results obtained using GCJ dataset given the same number of programmers.
This degradation in the accuracy might be because of the authenticity of the dataset ground truth.
The assumption behind establishing the ground truth for our dataset is only true to some extent,
since the contributor of a GitHub repository could copy code segments or even code files from
other sources. Such ground truth problem influences the result of the authorship identification
process. In real-world applications, this problem does not occur much often, since most scenarios
entails having authentic dataset.

8.2 Software Authorship Identification in the Open World

Authorship identification using open-world assumption is applicable in a real-world scenario when
attempting to identify the author of a given software, who might not be included in the suspect
set. In contrast to the conventional machine learning approach, in which the model evaluation is
based on unseen samples of labels that the model trained on during the training phase, addressing
open world problem raise another challenge in indicating whether a given tested sample belongs
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to a new unseen label. This setting is more reasonable for software forensics, since analysts aim to
attribute pieces of software, e.g., malware, that can possibly be created by new programmers who
are not part of the suspect set. Previous works by Caliskan et al. [29] and Dauber et al. [34] have ad-
dressed the problem of authorship identification in an open world scenario. The authors used clas-
sification confidence as an indicator of sample-label-membership, where high classification confi-
dence demonstrates a high probability of classified labels, whereas low confidence signals model
hesitation of the classification decision. In ensemble classifier, such as the adopted RFC, the per-
centage of voted trees for a certain label reflects the model classification confidence. For an author
(Ai ), the classification confidence of a RFC identification model is estimated by percentage of trees

voted for (Ai ) when testing a given sample, and it can be formulated as Conf (Ai ) =
∑

j V otej (Ai )

‖T ‖ ,

where Votej (Ai ) is the vote of tree j for Ai and ‖T ‖ is the total number of trees in RFC model.
Addressing open world identification requires setting up a confidence threshold where classi-

fications with higher confidence level are accepted, while classifications below the threshold are
rejected and reported as possible membership of new unseen labels. One way of estimating the
confidence threshold for a classifier is by classification margin defined by the difference between
the highest and second highest Conf (Ai ) of a given sample [29].

Experiment 1: Setting confidence threshold. To establish a confidence threshold for our RFC
identification models, we used a dataset of 1,000 C++ programmers with nine files each. Using the
training set, we estimated the confidence threshold be averaging all confidence levels of classified
samples as 1

n

∑n−1
j=0 Confj (Ai ), where Confj (Ai ) is the confidence of classifying sample j for an

author Ai , and n is the total number of samples. Using the RFC model of 300 trees trained to
identify 1,000 C++ programmers with an accuracy of 96.2%, we adopted a stratified ninefolds cross-
validation to calculate and evaluate the classification confidence threshold. Among the 9,000 code
samples in the dataset, 8,658 code sample were correctly classified with average confidence of
32.12%. The other 342 code samples were misclassified with average confidence of 28.46%. Using
this observation, we can set a confidence threshold to accept and reject classification based on the
model confidence in assigning programmers to code samples.

Experiment 2: Identification in the open world. Setting a confidence threshold results in
accepting and rejecting model decision on programmers identification. We can evaluate a certain
threshold by calculating the recall and precision of accepting and rejecting model decisions. For ex-
ample, accepting decisions for “out-of-world” samples is considered as a false positive (i.e., wrong
decision to accept). On the other hand, rejecting decisions for “in-world” samples is considered as

false negative. The precision and recall are then calculated as:precision =
trueposit ive

trueposit ive+f alseposit ive

and recall =
trueposit ive

trueposit ive+f alseneдative
. Based on the desired precision-recall tradeoff, a designer

decide on a confidence threshold that satisfies the system requirement. In this work, we report the

result of assessing different thresholds by the F1 − score = 2 × pr ecision×r ecall

pr ecision+r ecall
as the harmonic

average of the precision and recall metrics.
To simulate the open world experiment, we used 9,000 “out-of-world” samples and test them

with RFC model trained on 9,000 “in-world” samples. We passed all samples to classifier an ob-
served the results achieved by adopting several confidence thresholds. We started by a low confi-
dence threshold of 25% to achieve 71.4 precision, 62.3% recall, and 66.54 F1-score. When adopting a
high confidence threshold of 40%, the results do not change significantly with a precision of 74.8%,
recall of 68.1%, and F1-score of 71.29%. The obvious choice of selecting a threshold is by finding
the best estimation between the average of confidence levels of “in-world” correct classification
and the average of “out-of-world” misclassification. In our experiments, we found that 29% level
of confidence to be the best threshold to achieve the best results with precision of 94.13%, recall of
88.2%, and F1-score of 91.1%.
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9 LIMITATIONS

While our work provides a high accuracy of code author identification across languages, it has
several shortcomings that we outline in the following.

Multiple authors. All experiments in this work are conducted under the assumption that a
single programmer is involved in each source code sample. One shortcoming of our work is that
this assumption does not always hold in reality, since large software projects are often the result of
collaborative work and team efforts. The involvement of multiple authors in a single source code
is almost inevitable with the increasing use of open development platforms. Using our approach
to identify multiple authors can be an interesting direction for future work.

Authorship confusion. Since this work adopts a machine learning approach to identify pro-
grammers, it will only succeed if similar patterns from the training data are captured in the test
dataset. As a pathological case, consider the authorship confusion attack or mimicry attack where
the tested samples are contaminated to evade identification. Such contamination in the code could
cause substantial changes of the programming style, thus making it difficult (if not impossible) to
correctly identify the involved programmer.

Code size. The experiments in this work are conducted using datasets of source code samples
that exhibit sufficient information (i.e., adequate average lines of code) to formulate distinctive
authorship attribution for programmers. However, we have not investigated the minimal average
lines of code to be considered as sufficient to distinguish programmers. For example, one could
imagine that even though a small sample of code (e.g., with less than 10 lines of code) can present
enough information to correctly identify the programmer, it is difficult to generalize this observa-
tion broadly. Investigating the sufficient code size to identify programmers is not examined in this
work, and is an interesting future direction.

Binary Code. Our experiments on binary code show that deep representations assist identify-
ing programmers with higher accuracy and on a larger scale than state-of-the-art methods. How-
ever, the validity of our approach relies on the ability of successfully identifying the toolchain
provenance of investigated executable binaries. Using specialized compilers that generate non-
standard binary code may obstruct our approach, especially when failing to fingerprint the used
compiler. Moreover, the ground-truth assumption when assigning one programmer to a binary
code makes it easier to track programmers of decompiled codes. This process becomes more com-
plicated when multiple programmers are involved, since it requires to trace authorship through
the reverse engineering process. We leave this challenge to future work.

10 CONCLUSION AND FUTURE WORK

This work contributes to the extension of deep learning applications by utilizing deep representa-
tions in authorship attribution. In particular, we examined the learning process of large-scale code
authorship attribution using RNN, a more efficient and resilient approach to language-specifics,
number of code files available per author, and code obfuscation. Our approach extended author-
ship identification to cover the entire GCJ dataset across all years (2008 to 2016) in four program-
ming languages (C, C++, Java, and Python). Our experiments showed that the proposed approach
is robust and scalable, and achieves high accuracy in various settings. We demonstrated that deep
learning can identify more distinctive features from less distinctive ones. More distinctive features
are more likely to be invariant to local changes of source code samples, which means that they
potentially possess greater predictive power and enable large-scale code identification. One of the
most challenging problems that authorship analysis confronts is the reuse of code, where program-
mers reuse others’ codes, write programs as a team, and when a specific format is enforced by the
work environment or by code formatters in the development environment. In the future, we will
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explore how code reuse affects the performance of our approach, and code authorship identifica-
tion in general.
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