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ABSTRACT PURPOSE: Target and organ delineation during prostate high-dose-rate (HDR) brachytherapy
treatment planning can be improved by acquiring both a postimplant CT and MRI. However, this
leads to a longer treatment delivery workflow and may introduce uncertainties due to anatomical
motion between scans. We investigated the dosimetric and workflow impact of MRI synthesized
from CT for prostate HDR brachytherapy.

METHODS AND MATERIALS: Seventy-eight CT and T2-weighted MRI datasets from patients
treated with prostate HDR brachytherapy at our institution were retrospectively collected to train
and validate our deep-learning-based image-synthesis method. Synthetic MRI was assessed against
real MRI using the dice similarity coefficient (DSC) between prostate contours drawn using both
image sets. The DSC between the same observer’s synthetic and real MRI prostate contours
was compared with the DSC between two different observers’ real MRI prostate contours. New
treatment plans were generated targeting the synthetic MRI-defined prostate and compared with
the clinically delivered plans using target coverage and dose to critical organs.

RESULTS: Variability between the same observer’s prostate contours from synthetic and real MRI
was not significantly different from the variability between different observer’s prostate contours
on real MRI. Synthetic MRI-planned target coverage was not significantly different from that of
the clinically delivered plans. There were no increases above organ institutional dose constraints
in the synthetic MRI plans.

CONCLUSIONS: We developed and validated a method for synthesizing MRI from CT for
prostate HDR brachytherapy treatment planning. Synthetic MRI use may lead to a workflow
advantage and removal of CT-to-MRI registration uncertainty without loss of information needed
for target delineation and treatment planning. © 2023 American Brachytherapy Society. Published
by Elsevier Inc. All rights reserved.
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Introduction ered through interstitial catheters implanted temporarily in-
side of the prostate under trans-rectal ultrasound guidance.
These catheters guide an iridium-192 source to different
prostatic regions, allowing a prescription dose of radiation
coverage of either the entire prostate gland or a specific
focal target (5). To ensure that the catheters are positioned
correctly and to enable volumetric treatment planning, the
acquisition of a postimplant CT or MRI scans is standard
for prostate HDR brachytherapy if ultrasound-based treat-
ment planning is not performed. Generally (6), clinics do
not acquire both CT and MRI due to the lengthening of
Received 22 November 2022; received in revised form 27 March the total procedure time. However, both imaging modalities
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High-dose-rate (HDR) brachytherapy is an established
(1,2) modality for delivering radiation therapy to treat
prostate cancer. Prostate HDR brachytherapy results in lo-
cal control and acceptable bladder and rectum toxicity as
either monotherapy (3) for low- or favorable intermediate-
risk prostate cancer or as a boost (4) following external
beam radiation therapy for unfavorable intermediate- or
high-risk disease. Prostate HDR brachytherapy is deliv-
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Our clinical workflow for prostate HDR brachytherapy
combines both CT and MRI. CT is used for identification
of the implanted catheters and contouring of the bladder,
rectum, and urethra due to its fast acquisition time and
low geometric distortion (7). MRI is used to aid in the de-
lineation of the prostate relative to the bladder and rectum
(8). Studies (9—14) have suggested that prostate delineation
using just CT results in consistently larger volumes than
with the aid of MRI, thus increasing dose to surrounding
OARs leading to higher toxicity. MRI-based prostate delin-
eation has even led to improved erectile function recovery
following treatment (15). To best utilize the information
from both scans, an image registration must take place to
account for variation in patient positioning between the CT
and MRI. Adding uncertainty to this registration process
is the patient’s internal anatomical changes from the CT to
the MRI scan such as bladder or rectal filling. This uncer-
tainty may propagate to the identification of the prostate
and surrounding critical structures, which could yield a
treatment with increased toxicity or compromised target
coverage.

To mitigate these concerns, we propose the generation
of synthetic MRI information from the CT scan. This solu-
tion would lead to no registration uncertainty necessitating
additional margin around structures, as the synthetic image
will require no image fusion. This would also enable the
use of MRI information to aid in the treatment planning for
those unable to undergo the MRI scanning process due to
contraindications. Ultimately, this solution would allow for
a faster and more efficient brachytherapy treatment work-
flow because the time and resources needed for the MRI
scan would not be required.

Synthesis of MRI data can be carried out using a data-
driven framework known as a Generative Adversarial Net-
work (GAN) (16), which combines two types of convo-
lutional neural networks. This artificial intelligence-based
method has been successful for image synthesis in the con-
text of radiation oncology (17), being extensively studied
in the reverse direction; synthesis of CT information from
multiple different MRI sequences (18-20). There have,
however, been investigations toward synthetic MRI from
CT in anatomical sites like head and neck (21) and the
spine (22). These studies have traditionally employed a
conditional GAN architecture referred to as Pix2Pix (P2P)
(23), which is a combination of a U-net (24) generator
with a PatchGAN (25) image classifier for the discrimina-
tor. Other works have utilized a GAN architecture called
CycleGAN (26) for the task of MRI synthesis for lung
(27,28) and brain (29).

The effectiveness of these GAN architectures in certain
anatomical sites has been reported, but there are character-
istics of the CT and MRI acquisitions in the pelvis which
render these “off-the-shelf” architectures not as effective.
These are the same characteristics which make image reg-
istration between the CT and MRI scan difficult in the first
place; variation in external patient positioning and blad-

der or rectum filling from the time of CT to the time of
MRI. P2P-based architectures struggle (30) to learn the
mapping from one image to another in the absence of per-
fectly paired data due to a lacking of proper constraints on
the task. Organ filling between images can lead to such a
situation. CycleGAN with its unsupervised training cycles
can better handle this mismatch, but can (31,32) introduce
artificial features into synthetic image data. It is for these
reasons that a novel architecture, PCGAN, was developed
by our group. PCGAN is a hybrid of P2P and CycleGAN.
A separate study is being conducted regarding the image
quality of synthetic MRI from PCGAN.

The objective of this study was to evaluate the dosimet-
ric and workflow impact of the use of synthetic MRI from
PCGAN in prostate HDR brachytherapy, such that a bet-
ter understanding of the clinical impact of synthetic MRI
could be determined.

Methods and materials
Patient data collection and preprocessing

Postimplant CT & T2-weighted MRI datasets from 95
consecutive prostate HDR brachytherapy treatments deliv-
ered at our institution between April 2018 and December
2020 were retrospectively gathered with approval of our
institutional review board. Of these 95, seven did not un-
dergo MRI scanning due to contraindications which pre-
cluded them from the MRI. Following removal of 10 fur-
ther image datasets which had severe artifacts on either
the CT or MRI scan, the entire dataset consisted of 78 pa-
tients. Examples of artifacts which led to image dataset re-
moval from our training dataset were severe metal artifacts
on the CT from implanted orthopedic devices or previous
low-dose-rate prostate seed implantation, or CT/MRI scans
impacted by motion artifacts. Each dataset is comprised of
a CT and MRI volume acquired following implantation of
the interstitial catheters into the prostate in preparation for
HDR brachytherapy. CT data were from a Brilliance Big
Bore CT scanner (Philips Health Care, Cleveland OH) us-
ing an imaging technique with 140 kVp, 351 mAs, and 2
mm slice thickness. MRI data were from one of two 1.5
T MRI scanners (GE HealthCare, Milwaukee, WI), prior
to 2020 was on a Signa HDxt, and from 2020 onward on
a Signa Artist. Regardless of the scanner, the T2-weighted
axial image data were acquired using a fast spin echo pulse
sequence with TR between 4300 ms and 5000 ms depend-
ing on the axial field-of-view (FOV), TE of 100 ms, and
3 mm slice thickness.

The preprocessing of this data prior to PCGAN train-
ing involved a resampling of the CT data to match the
MRI data array size and resolution in all three directions.
This step was performed within Velocity oncology imaging
informatics system (Varian Medical Systems, Palo Alto,
CA). Further preprocessing of the dataset included inten-
sity normalization of the pixel values between 0 and 1.
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Fig. 1. Flow chart of PCGAN detailing how image data passes between the two generators and four discriminators. Arrows indicate inputs or outputs to
or from the generators or discriminators. Color of the text and arrows indicate images used in both the forward and reverse cycle. The two generators
have encoder-decoder structure, the four discriminators each have encoder structures.

A deformable registration is not used during this work-
flow as it is not clinically commissioned at our institution.
Fig. 1 details our GAN architecture, PCGAN, tasked with
synthesizing axial T2-weighted MRI slices from input ax-
ial pelvis CT slices. The idea behind PCGAN is to take
advantage of the large regions of the image data which
have spatial agreement, generally everywhere but the skin
surface, bladder, and rectum, using components of a P2P-
based GAN and combine it with transformation cycles
classically seen in CycleGAN to account for organ filling
and body surface mismatches between the CT and MRI. In
this way, we use the strengths of both P2P and CycleGAN
while mitigating their weaknesses often seen (33) when
certain medical imaging tasks are posed to them. These
weaknesses include P2P’s requirement for paired training
images, and CycleGan’s weakness for object transfigura-
tion (34). PCGAN is made up of two encoder-decoder
structured generators and four discriminators. The gener-
ators consist of an encoder of three convolutional layers
followed by 15 ResNet (35) blocks and a decoder of three
transposed convolutional layers. There are generators for
each domain translation direction, CT to MRI and MRI
to CT, with transformation cycles between each generator
similar to a CycleGAN. Novel to PCGAN is the use of
two discriminators for each generator, one to determine if
a synthesized image is real or fake like a standard GAN
discriminator, and one to determine if the CT/MRI im-
ages posed to the discriminator are paired or unpaired.
The combination of these two discriminators adds addi-
tional constraints to the task of synthetic MRI generation

which helps control the introduction of artificial features
into the synthesized images.

Each loss component is given a multiplicative weight
based on its ultimate importance toward the overall training
process. The weighted generator and discriminator compo-
nents are all summed to form the total generator and dis-
criminator loss which is minimized during training. During
the network development portion of this project, different
weighting combinations were attempted which made the
contributions of each loss component equal or had one
dominant over the other, and a qualitative assessment of
the network output was used to judge the weighting ef-
fect on the synthesized images. For the clinical context of
prostate HDR brachytherapy, we empirically weighted the
CycleGAN portion of PCGAN 1.5-times higher than the
P2P portion to account for the organ filling and surface
mismatches that were observed in our collected dataset,
while maintaining enough P2P strength to enforce consis-
tency through the forward and reverse cycles and prevent
artificial feature generation.

Training and model validation

Our 78 datasets were pseudo-randomly divided into a
training cohort for network development and testing cohort
held out from training for quantitative network assessment.
This split was done dataset by dataset, not slice by slice so
there were no instances where axial slices from the same
dataset were present in both the training and testing cohort.
Additionally, as there were some datasets from the same
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Fig. 2. (a) Example input prostate HDR brachytherapy CT slice with display window/level, and (b) the corresponding ground truth T2-weighted MRI
slice. Both images used to train PCGAN for the task of T2-weighted MRI synthesis from a pelvis CT.

patient, care was taken to not have any datasets from the
same patient be on opposite sides of the training-testing
data split. In the end, the training cohort had 58 patient
datasets (number of axial slices =2216) and the testing co-
hort had 20 patient datasets (number of axial slices =785).
An example of a CT and MRI pair used for network train-
ing is found in Fig. 2.

Network weights were initialized with Glorot weight
initialization (36) and updated with the Adam optimizer
(37) using hyper-parameters 8, =0.5, ,=0.999, ¢=1E-
7, and a learning rate of 1E-4. Training was performed
using a single Quadro (NVIDIA Corporation, Santa Clara,
CA) RTX 6000 graphics processing unit using a batch size
of one. GANs can be unstable (38) as they train and may
start to synthesize worse images if they are trained for too
long. As they lack a unified objective function, an effec-
tive method for performance analysis of the GAN output
along model training is a visual inspection of the output
from validation samples (39) for assessment of the prostate
boundary delineation. Training took approximately 6 days
to complete the 100 epochs necessary to synthesize MRI
images of acceptable quality.

Synthetic MRI evaluation

Following network training, the 20 CT datasets in our
testing cohort were used to generate synthetic MRI data
which were compared with the ground truth real MRI data
in two ways. The prostate was first contoured on Eclipse
(Varian Medical Systems, Palo Alto, CA) using both the
synthetic and real MRI datasets by a radiation oncologist
not originally involved with the clinically delivered plan.
Synthetic and real MRI contours were then exported to
Velocity and used to compute the dice similarity coeffi-

cient (DSC) (40,41) and the mean surface distance (MSD)
(42) between the groups. A comparison of these contours
using these metrics yields the intermodality variability of
prostate segmentation between synthetic and real MRI. The
inter-observer variability of prostate segmentation with real
MRI was assessed via a comparison between the physi-
cian’s real MRI contours from this study with the prostates
contoured during the clinically delivered plan using real
MRI by one of two other radiation oncologists. In this
way, the intermodality variability between real and syn-
thetic MRI was compared with the inter-observer variabil-
ity of prostate segmentation on real MRI. The statistical
significance of any difference was assessed via a Student’s
single-tailed heteroscedastic #-test (43) using a significance
threshold of 0.05.

The prostate structure on real and synthetic MRI was
then used to create new planning target volumes (PTVs)
with an isotropic 3 mm expansion followed by removal
of the urethra, bladder, and rectum. Adjustment of the
source dwell times in the original CT-defined clinically
delivered catheter positions was performed to re-plan the
brachytherapy treatment to cover the synthetic MRI PTV
with the prescription dose (either 13.5 Gy for two fractions
for monotherapy or 15 Gy for a single fraction boost) in a
manner consistent with the originally delivered treatment
in terms of target coverage and dose to the surrounding
critical structures. This new dose was then overlaid onto
the real MRI PTV. The dosimetric impact of using the
synthetic MRI for planning was assessed by a comparison
of dose volume histogram (DVH) metrics such as PTV
Vl()()%, V150%, and Vgoo% (PTV receiving 100%, 150%, and
200% of the prescription dose respectively) averaged over
all 20 datasets in our test cohort. Additionally, the dose to
the surrounding OARs in the synthetic MRI PTV-targeted
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Fig. 3. (a) Example prostate HDR brachytherapy CT slice from the testing cohort with display window/level, (b) corresponding synthetic MRI output
from trained PCGAN, (c) ground truth MRI scan indicating qualitative agreement between it and the network output in (b).

treatments was compared with the clinically delivered plan
using Djc. (minimum dose received by maximally irradi-
ated 1 cubic centimeter of the considered structure) for the
bladder, rectum, and urethra averaged over all 20 datasets
in our test cohort. Because there were different prescrip-
tion doses present in our testing cohort depending on if the
brachytherapy treatment was used as monotherapy or as an
external beam boost, we report Dy . as a percentage of the
prescription dose. In this way, DVH metrics from plans tar-
geting the synthetic MRI PTV were compared with plans
targeting the real MRI PTV such that we assessed how
delivering dose to the synthetic MRI-defined PTV would
cover the “ground truth” real MRI-defined PTV and how
it would impact the surrounding critical organs relative to
the clinically delivered original treatment plans.

Results
Qualitative assessment of synthetic MRI

Fig. 3 shows a CT slice from the testing cohort, syn-
thetic T2-weighted MRI from our trained PCGAN, and
corresponding ground truth T2-weighted MRI. There is vi-
sual similarity between the synthetic and real MRI across
the lateral extent of the prostate and posteriorly toward
the rectum. The slight mis-registration between the ground
truth CT and MRI is also apparent, showing a weakness
of rigid body registration between the CT and real MRI
and the need for deformable image registration moving for-
ward. Fig. 4 shows a synthetic as well as a real coronal
and sagittal MRI slice for the same patient shown in Fig. 3.
There is qualitative agreement between the synthetic and
real MRI extending from the prostate apex to the base.

Intermodality vs interobserver variability of prostate
contours

A box and whisker plot which details the DSC and
MSD between prostate contours from synthetic MRI and

real MRI (intermodality, blue), and the DSC and MSD be-
tween prostate contours from the observer in this study and
the contour from the clinically delivered treatment (inter-
observer, pink) averaged over the 20 datasets in the test
cohort can be found in Figs. 5a and b, respectively. The
inter-modality variability of the prostate contour between
synthetic and real MRI was found to be statistically sim-
ilar (DSC p=0.37, MSD p=0.47) to the inter-observer
variability of the prostate contour between observers.

Dosimetric impact of synthetic MRI

Fig. 6 shows an axial, coronal, and sagittal CT slice of
the prostate with the real and synthetic MRI PTV overlaid
along with the 100% prescription isodose line from a
representative patient in the testing cohort. There are com-
parable contours and target coverage between the real and
synthetic MRI PTV in this slice, extending throughout the
entire volume from the apex to the base. Fig. 7 shows box
and whisker plots detailing the variation of PTV Vg,
Vis0%, and Vapgg for the synthetic and real MRI datasets
within the test cohort. Re-planning the original treatment
to cover the synthetic MRI PTV led to all three constraints
being met on both the synthetic and real MRI PTV struc-
tures, and no statistical difference between the three DVH
metrics considering the synthetic and real MRI PTV. Box
and whisker plots showing the variation of D for the
bladder, rectum, and urethra for the synthetic MRI PTV
plans and the clinically delivered real MRI plans in the test
cohort can be found in Fig. 8. While there were increases
in bladder, rectum, and urethra doses in the plans target-
ing the synthetic MRI PTV compared with the clinically
delivered plans, in no case did this lead to an increase
above the institutional organ dose constraint for Djc.
Included in the Figs. 7 and 8 with the dashed black lines
are institutional target goals and OAR dose constraints
based on American Brachytherapy Society guidance (1). A
smaller range of OAR doses was observed in the synthetic
MRI-PTV plans compared with the clinically delivered
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Fig. 4. Synthetic (a) coronal and (c) sagittal MRI and real (b) coronal and (d) sagittal MRI slices of the same patient scan from Fig. 3 showing agreement

of the synthetic and real MRI scan at the prostate apex and base.
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Fig. 5. Box and whisker plots of the (a) dice similarity coefficient and (b) mean surface distance between prostate contours drawn on real and synthetic
MRI (intermodality, blue, right) and those between prostate contours drawn on real MRI by two different observers (interobserver, pink, left). Included
on plot are p-values between two groups, showing no difference between interobserver and intermodality variability in the prostate contouring process.

plans. This could be attributed to the same individual plan-
ning the synthetic MRI-PTV plans, compared to different
individuals planning the clinically delivered plans over
the two-and-a-half years that this study collected cases
over.

Discussion

This aim of this work was to determine the impact of
using synthetic MRI at different steps of the prostate HDR
brachytherapy delivery workflow. For target delineation,
we found minimal differences between prostate contours
drawn on real and synthetic MRI. Dosimetrically, target
coverage was no different between using real or synthetic
MRI to plan. Finally, there were no violations of insti-

tutional dose constraints for urethra, bladder and rectum
when planning with the synthetic MRI.

Geometric variability of the prostate contour was as-
sessed using the DSC and MSD between prostate contours
drawn on synthetic MRI and those from real MRI by the
same observer, and compared this value with the DSC and
MSD between different observers’ prostate contour drawn
on the same real MRI scan. Following this, the dosimetric
impact on a real MRI PTV by planning a prostate HDR
brachytherapy treatment to target the synthetic MRI PTV
was assessed via DVH metrics such as PTV Vg%, Vis50%,
and Vjgo4. The impact on the surrounding critical struc-
tures by the synthetic MRI PTV targeted plans was also
assessed using Dj.. and compared with the clinically de-
livered plan.
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Fig. 6. Axial CT slice of the prostate (a) base and (b) apex from our testing cohort showing real (rMRI, blue) and synthetic (sMRI, pink) planning target
volumes expanded from prostate contours and the coverage of the 100% prescription (Rx) isodose line from the re-planning of the HDR brachytherapy
treatment. The Rx isodose line covers both targets well in these slices, as well as over the entire volume as seen in the (c) coronal and (d) sagittal slices.
Display window/level used was 700/-110. Red lines in (c) indicate location of axial slices at base (a) and apex (b). Red line in (d) indicates location of

coronal slice (c).

Averaged over the 20 datasets in the test cohort, the
DSC between the real and synthetic MRI prostate con-
tours was (average =+ standard deviation) 0.846 + 0.045,
compared with 0.852 £ 0.057 for the DSC between the
different observers using the real MRI to draw the prostate
contour (p=0.37). Considering the MSD, a similar trend
was observed. MSD between the real and synthetic MRI
prostate contours was 2.19 + 0.69 mm, compared with
247 £ 0.50 mm for the MSD between the different ob-
servers using real MRI (p=0.47). Both geometric results
indicate the inter-observer variability of the prostate con-

tour using real MRI is similar to the inter-modality vari-
ability of the prostate contour using real or synthetic MRI.
This shows how the prostate contour accuracy is not statis-
tically affected through the use of synthetic MRI generated
from PCGAN.

PTV DVH metrics indicate no decrease in real MRI-
defined target coverage if the synthetic MRI PTV was used
to plan, nor any unacceptable increase in the dose hotspots.
This is important as a loss in target coverage such that a
tumorcidal dose is not delivered can lead to losses in lo-
cal control in radiotherapy (44). There were increases in
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Fig. 8. Box and whisker plots of the re-planning result targeting the synthetic MRI (sMRI) PTV (pink, right), and dose overlaid onto the real MRI
(rMRI) bladder, rectum, and urethra. (a) Bladder Djcc, (b) rectum Djcc, (c) urethra Djc.. Included on the plots are the institutional constraint for each
organ shown in the dashed black line, in terms of percentage of prescription dose.

the Dj. of the bladder, rectum, and urethra in the syn-
thetic MRI re-planned treatments. These increases can be
explained by our use of the original catheter positions for
the synthetic MRI re-plans. The synthetic MRI-defined tar-
get occasionally extended to regions without any catheter
placement. This led to slight increases in some of the pe-
ripheral catheter dwell times to ensure proper target cov-
erage, thus increasing dose to the surrounding OARs. It
must be noted that this did not lead to an increase above
institutional dose constraints. Toxicity to these organs in-
duced by prostate HDR brachytherapy is a major concern.
Any increases above the dose constraints in these struc-
tures would be unacceptable and necessitate dropping the
target coverage, potentially reducing the probability of lo-
cal disease control.

Lastly, the rapid generation of a synthetic T2-weighted
MRI would yield an immediate workflow advantage. A
proposed clinical workflow following synthetic MRI im-

plementation is as follows: a patient receives a postimplant
pelvis CT scan. Within a few seconds of the CT scan and
with the patient still on the scanner table, physicians can
review the postimplant CT and synthetic MRI information
and begin target and critical structure delineation, on a
timescale that is much quicker than the current workflow.
Synthetic MRI information could be used to start the plan-
ning process before acquisition of the real MRI. The real
MRI information could be obtained and registered to the
CT and synthetic MRI to confirm the prostate contour. As-
suming everything matches, treatment can proceed. Once
sufficient institutional confidence in the synthetic MRI is
achieved, the real MRI might only be acquired in the case
of a poor synthetic MRI generation. This would speed up
the treatment planning even more. Synthetic MRI has the
potential to greatly accelerate the entire clinical workflow,
at no “cost” or loss of clinical information as in the case
of skipping the real MRI. We consider synthetic MRI to
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be “free” information. Prostate contours on synthetic MRI
were sufficiently accurate such that brachytherapy plans
were consistent with the originally treated plan which used
the real MRI target. It should be noted that this temporal
advantage does not include the time it takes for the image
registration between the CT and the real MRI scan. As the
synthetic MRI is generated from the CT, it will not require
any image fusion prior to use for contouring. These image
registrations can be time-consuming, taking on the order
of 20-30 minutes to ensure a good-quality match between
the CT and real MRI. The workflow advantage may be
even greater that what is reported here. The image regis-
tration process between CT and MRI also adds additional
uncertainty to the target and surrounding critical structure
delineation. It is reported (45-49) that uncertainties be-
tween 2 and 5 mm are introduced during registration. This
error is systematic and could potentially shift high-dose re-
gions away from the target which may compromise tumor
control.

An additional note regarding this work is the generaliz-
ability of it to other institutions which utilize a CT or com-
bined CT/MRI planning workflow for HDR brachyther-
apy. Theoretically, one could use this deep-learning-based
framework for synthetic MRI generation with just a CT.
It is likely that differences in CT vendor, or even acquisi-
tion protocol differences would necessitate at least transfer
learning to improve the synthetic MRI generation, how-
ever this method of image synthesis using clinically paired
multi-modality data would be generalizable to any institu-
tion with a large enough institutional dataset to train the
model.

There has been other work in the space of generat-
ing MRI information from CT scans of the male pelvis
(50-52), with important differences separating our work
from the previously published work in the literature.
Firstly, these prior studies used planning CT-simulation
scans as the input and diagnostic MRI scans from a differ-
ent day for MRI synthesis for external beam radiation ther-
apy. We feel that visualization of the intraprostatic detail
needed for prostate HDR brachytherapy treatment planning
is a more complicated task. Secondly, the previous studies
used a pure CycleGAN for image synthesis instead of a
custom hybrid network.

There are limitations to this work. Use of DSC pro-
vides an estimate as to the overlap between the prostate
contours, but ignores where there is not overlap. If the
synthetic MRI prostate contour extends closer towards the
bladder, rectum, or urethra, this could lead to an increase
in toxicity to the patient relative to a target defined using
real MRI. While this was not seen when looking at the
doses to the surrounding critical structures in the synthetic
MRI PTV-target plans, DSC is not sensitive to the location
of the discrepancy. Use of MSD helps, but still has certain
limitations in that it may not be sensitive to contour out-
liers which could have dosimetric impact. Furthermore, be-
cause our OAR dose comparison did not have PTV target

coverage normalized between the clinically delivered and
synthetic MRI re-planned cases, the comparison is some-
what clinically based. Seventy-eight unique patient datasets
have a low likelihood of containing all of the potential
edge cases that our trained network should be robust to
for eventual clinical implementation, and work is under-
way to expand this number. It should be noted though,
that our number of collected patient datasets are on a sim-
ilar scale or greater to those of similar published works for
medical image synthesis using a GAN (18,20,53). Lastly,
we excluded images from training that contained imaging
artifacts. Further investigation will be carried out to de-
termine how the network performs with these data, and
how we can extend our network’s performance to include
these and other edge cases. Lastly, our use of rigid-body
registration to fuse the ground truth CT and MRI intro-
duced slight misalignments in our training data. A well-
validated deformable image registration process would bet-
ter account for the internal organ motion which occurs be-
tween the time of the CT and MRI, thus may enable more
successful algorithm training due to better agreement be-
tween the input CT and ground truth MRI. This will be an
important part of the future development of work such as
these.

Moving forward, there are many avenues where this
work can be expanded to. Related to prostate cancer, the
F-Sharp trial (5) is an example where an intraprostatic re-
currence is treated just to a portion of the prostate, instead
of the entire gland. Synthetic MRI could be useful for
delineating these lesions. Considering other disease sites,
gynecological cancers have long been underrepresented in
research. Treatment planning for brachytherapy treatments
using a tandem and ovoid/ring (with or without needles)
will often include or be based completely on an MRI scan.
In patients unable to undergo a real MRI scan or for work-
flow advantages similar to what was shown during this
work, synthetic MRI could be a welcome addition to the
clinical workflow for endometrial cancers. Lastly, there are
implications of this work in external beam radiation ther-
apy, as MRI is being combined with CT more than ever
for treatment planning. Synthetic MRI should show value
here as well.

Conclusions

This study demonstrates that PCGAN can synthesize
T2-weighted MRI volumes on a timescale that should help
accelerate the workflow for prostate HDR brachytherapy
without losing the soft-tissue MRI information. There was
dosimetric similarity between targeting synthetic MRI de-
fined PTVs and real MRI defined PTVs, without increasing
dose to surrounding critical structures beyond institutional
dose constraints. With further synthetic MRI image qual-
ity improvement, synthetic MRI may become an integrated
part of the standard clinical workflow for prostate HDR
brachytherapy.
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